Direct Solar Charging of an Organic-Inorganic, Stable, and Aqueous Alkaline Redox Flow Battery with a Hematite Photoanode.

Angew Chem Int Ed Engl

LEPABE-Department of Engineering, University of Porto, Rua Dr. Roberto Frias S/N, P-4200-465, Porto, Portugal.

Published: June 2016

The intermittent nature of the sunlight and its increasing contribution to electricity generation is fostering the energy storage research. Direct solar charging of an auspicious type of redox flow battery could make solar energy directly and efficiently dispatchable. The first solar aqueous alkaline redox flow battery using low cost and environmentally safe materials is demonstrated. The electrolytes consist of the redox couples ferrocyanide and anthraquinone-2,7-disulphonate in sodium hydroxide solution, yielding a standard cell potential of 0.74 V. Photovoltage enhancement strategies are demonstrated for the ferrocyanide-hematite junction by employing an annealing treatment and growing a layer of a conductive polyaniline polymer on the electrode surface, which decreases electron-hole recombination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5021144PMC
http://dx.doi.org/10.1002/anie.201602451DOI Listing

Publication Analysis

Top Keywords

redox flow
12
flow battery
12
direct solar
8
solar charging
8
aqueous alkaline
8
alkaline redox
8
charging organic-inorganic
4
organic-inorganic stable
4
stable aqueous
4
redox
4

Similar Publications

SUZ12-Increased NRF2 Alleviates Cardiac Ischemia/Reperfusion Injury by Regulating Apoptosis, Inflammation, and Ferroptosis.

Cardiovasc Toxicol

December 2024

Department of Cardiovascular Center, Beijing Tongren Hospital, Capital Medical University, No. 3 Chongwenmennei Street, Dongcheng District, Beijing, 100730, China.

Nuclear factor erythroid 2-related factor 2 (NRF2) is a redox-sensitive transcriptional factor that enables cells to resist oxidant responses, ferroptosis and inflammation. Here, we set out to probe the effects of NRF2 on cardiomyocyte injury under acute myocardial infarction (AMI) condition and its potential mechanism. Human cardiomyocytes were exposed to hypoxia/reoxygenation (H/R) to induce cell injury.

View Article and Find Full Text PDF

Carbon Felts Uniformly Modified with Bismuth Nanoparticles for Efficient Vanadium Redox Flow Batteries.

Nanomaterials (Basel)

December 2024

State Key Laboratory of Heavy Oil Processing, Institute of New Energy, College of New Energy, China University of Petroleum (East China), Qingdao 266580, China.

The integration of intermittent renewable energy sources into the energy supply has driven the need for large-scale energy storage technologies. Vanadium redox flow batteries (VRFBs) are considered promising due to their long lifespan, high safety, and flexible design. However, the graphite felt (GF) electrode, a critical component of VRFBs, faces challenges due to the scarcity of active sites, leading to low electrochemical activity.

View Article and Find Full Text PDF

Pyrrolnitrin, a potent antifungal compound originally discovered in Pseudomonas strains, is biosynthesized through a secondary metabolic pathway involving four key enzymes. Central to this process is PrnB, a heme enzyme that catalyzes the complex transformation of 7-Cl-L-tryptophan. Despite its structural similarity to indoleamine 2,3-dioxygenase (IDO) and tryptophan 2,3-dioxygenase (TDO) and its classification within the histidine-ligated heme-dependent aromatic oxygenase (HDAO) superfamily, PrnB has remained relatively unexplored due to challenges in reconstituting its in vitro activity.

View Article and Find Full Text PDF

Advanced aqueous phenazine redox flow battery enhanced by selective interfacial water behavior on Co/NC modified electrode.

J Colloid Interface Sci

December 2024

Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou, 213164, China. Electronic address:

Although aqueous organic redox flow battery (RFBs) is a highly promising energy storage device, the redox reaction kinetics of the anode organic electrolyte material, especially for phenazine derivatives, are limited by low electrochemical activity of traditional porous carbon electrodes. Herein, Co/NC composite electrocatalyst was elaborated to significantly enhance the redox reaction kinetics of phenazine derivatives, in which Co/NC electrocatalyst could improve energy efficiency of aqueous phenazine RFBs by 43.2 % compared to pure carbon felt electrodes at current density of 100 mA/cm.

View Article and Find Full Text PDF

Microglial Nrf2-mediated lipid and iron metabolism reprogramming promotes remyelination during white matter ischemia.

Redox Biol

December 2024

Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Hubei Key Laboratory of Neural Injury and Functional Reconstruction, Huazhong University of Science and Technology, Wuhan, 430030, PR China; Key Laboratory of Vascular Aging, Ministry of Education, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, PR China. Electronic address:

Background: Oxidative stress and microglial activation are critical pathomechanisms in ischemic white matter injury. Microglia, as resident immune cells in the brain, are the main cells undergoing oxidative stress response. However, the role and molecular mechanism of oxidative stress in microglia have not been clearly elucidated during white matter ischemia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!