[Factor Xa Promotes Differentiation of Meg-01 Cell Line].

Zhongguo Shi Yan Xue Ye Xue Za Zhi

Department of Light Industry Technique and Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, Shandong Province, China. E-mail:

Published: April 2016

Objective: To investigate the effect and mechanism of Factor Xa on the differentiation of Meg-01 cells into platelet-like particles.

Methods: The Meg-01 cells were used as experimental object, Factor Xa was used as agonist. Cell proliferation was detected by CCK-8 assay. The viability of platelet-like particles was analyzed by AlamaBlue kit. MAPK/ERK pathway and PI3K/AKT pathway were assayed by Western blot. The expression of CD41b was analyzed by Western blot and flow cytometry. Cell cycle and apoptosis were detected by flow cytometry.

Results: The Factor Xa (1 µg/ml) inhibited cell viability, induced apoptosis. Factor Xa triggered cell arrest at the G(2)/M stage and down-regulated the expression of SKP2. After Meg-01 cells were stimulated by Factor Xa, the expression of CD41b was up-regulated and the MAPK/ERK pathway and PI3K/AKT pathway were activated. The platelets-like particles stimulated by FXa activation were viable.

Conclusion: The Factor Xa maybe display some effect on the differentiation of megakaryocytes into platelets.

Download full-text PDF

Source
http://dx.doi.org/10.7534/j.issn.1009-2137.2016.02.040DOI Listing

Publication Analysis

Top Keywords

meg-01 cells
12
differentiation meg-01
8
mapk/erk pathway
8
pathway pi3k/akt
8
pi3k/akt pathway
8
western blot
8
expression cd41b
8
factor
6
cell
5
[factor promotes
4

Similar Publications

Platelet-like particles (PLPs), derived from megakaryocytic cell lines MEG-01 and K-562, are widely used as a surrogate to study platelet formation and function. We demonstrate by RNA-Seq that PLPs are transcriptionally distinct from platelets. Expression of key genes in signaling pathways promoting platelet activation/aggregation, such as the PI3K/AKT, protein kinase A, phospholipase C, and α-adrenergic and GP6 receptor pathways, was missing or under-expressed in PLPs.

View Article and Find Full Text PDF

Platelets are essential blood components that maintain hemostasis, prevent excessive bleeding, and facilitate wound healing. Reduced platelet counts are implicated in various diseases, including leukemia, hepatitis, cancer, and Alzheimer's disease. Enhancing megakaryocytic differentiation is a promising strategy to increase platelet production.

View Article and Find Full Text PDF

Elevated levels of pro-thrombotic eNOS-negative platelets in COVID-19 patients.

Thromb Res

December 2024

Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, Canada; Department of Pharmacology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada; Cardiovascular Research Institute, University of Alberta, Edmonton, AB, Canada; Cancer Research Institute of Northern Alberta, University of Alberta, Edmonton, AB, Canada. Electronic address:

Background: Platelet-rich microvascular thrombi are common in severe COVID-19. Endogenous nitric oxide (NO)-signaling limits thrombus formation and previously we identified platelet subpopulations with a differential ability to produce NO based on the presence or absence of endothelial nitric oxide synthase (eNOS). eNOS expression is counter-regulated by cytokines, and COVID-19-associated immune/inflammatory responses may affect the transcriptome profile of megakaryocytes and their platelet progeny.

View Article and Find Full Text PDF

Despite an undetectable plasma viral load as a result of antiretroviral therapy, HIV-1-infected individuals with poor immune reconstitution harbor infectious HIV-1 within their platelets. Megakaryocytes, as platelet precursors, are the likely cellular origin of these HIV-1-containing platelets. To investigate the mechanisms that allow megakaryocytes to support HIV-1 infection, we established in vitro models of viral infection using hematopoietic stem cell-derived megakaryocytes and the megakaryocytic MEG-01 cell line.

View Article and Find Full Text PDF

Background: Type 2 diabetes mellitus (T2DM) presents a thrombotic environment, contributing to diabetic macroangiopathy and microangiopathy. In this study, the regulation of microthrombosis in T2DM was assessed.

Methods: Platelets from T2DM patients and healthy controls were analyzed using 4D label-free proteomics and bioinformatics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!