Nanoscale gas bubbles residing on a macroscale hydrophobic surface have a surprising long lifetime (on the order of days) and can serve as cavitation nuclei for initiating inertial cavitation (IC). Whether interfacial nanobubbles (NBs) reside on the infinite surface of a hydrophobic nanoparticle (NP) and could serve as cavitation nuclei is unknown, but this would be very meaningful for the development of sonosensitive NPs. To address this problem, we investigated the IC activity of polytetrafluoroethylene (PTFE) NPs, which are regarded as benchmark superhydrophobic NPs due to their low surface energy caused by the presence of fluorocarbon. Both a passive cavitation detection system and terephthalic dosimetry was applied to quantify the intensity of IC. The IC intensities of the suspension with PTFE NPs were 10.30 and 48.41 times stronger than those of deionized water for peak negative pressures of 2 and 5MPa, respectively. However, the IC activities were nearly completely inhibited when the suspension was degassed or ethanol was used to suspend PTFE NPs, and they were recovered when suspended in saturated water, which may indicates the presence of interfacial NBs on PTFE NPs surfaces. Importantly, these PTFE NPs could sustainably initiate IC for excitation by a sequence of at least 6000 pulses, whereas lipid microbubbles were completely depleted after the application of no more than 50 pulses under the same conditions. The terephthalic dosimetry has shown that much higher hydroxyl yields were achieved when PTFE NPs were present as cavitation nuclei when using ultrasound parameters that otherwise did not produce significant amounts of free radicals. These results show that superhydrophobic NPs may be an outstanding candidate for use in IC-related applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ultsonch.2016.02.009 | DOI Listing |
Anal Chim Acta
January 2025
Department of Physical and Analytical Chemistry, Faculty of Chemistry, University of Oviedo. C/ Julián Clavería 8, 33006, Oviedo, Spain; Health Research Institute of Asturias (ISPA), Avda de Roma s/n, 33011, Oviedo, Spain. Electronic address:
Background: 3D cellular structures have been considered the following step in the evaluation of drugs penetration after 2D cultures since they are more physiologically representative in cancer cell biology. Here the penetration capabilities of Pt (IV)-loaded ultrasmall iron oxide nanoparticles in 143B osteosarcoma multicellular spheroids of different sizes is conducted by a multidimensional quantitative approach. Single cell (SC) and imaging techniques (laser ablation, LA) coupled to inductively coupled plasma-mass spectrometry (ICP-MS) are used to visualize their penetration pathways and distribution in comparison to those of cisplatin.
View Article and Find Full Text PDFSmall
December 2024
Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, P. R. China.
Triboelectric nanogenerators (TENGs), among the most simple and efficient means to harvest mechanical energy, have great potential in renewable energy utilization. While the output performance of TENGs is still not high enough, which limits its practical application. Here, a poly(vinylidene fluoride) (PVDF)/fluorinated ethylene propylene nanoparticles (FEP NPs) porous nanofiber (PFPN) membrane with waterproof, breathable, surface superhydrophobic and high tribo-negative properties is proposed for achieving high-performance of TENGs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2024
School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
Adv Sci (Weinh)
November 2024
Sauvage Laboratory for Smart Materials, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.
Overcoming the trade-off between the graphitization of the carbon substrate and enhanced electronic metal-support interaction (EMSI) and intrinsic activity of Pt-C catalysts remains a major challenge for ensuring the durable operation of energy conversion devices. This article presents a hybrid catalyst consisting of PtFe nanoparticles and single Pt and Fe atoms supported on N-doped carbon (PtFe@PtFe-N-C), which exhibits improved activities in hydrogen evolution and oxygen reduction reactions (HER and ORR, respectively) and has excellent durability owing to the high graphitization, rich edge defects, and porosity of the carbon in PtFe@PtFe-N-C, as well as strong EMSI between the PtFe nanoparticles and edge-defective carbon embedded with Pt and Fe atoms. According to theoretical calculations, the strong EMSI optimizes the H* adsorption-desorption and facilitates the adsorption OOH*, accelerating the HER and ORR processes.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Guizhou University Key Laboratory of Green Chemical and Clean Energy Technology, Guizhou University Engineering Research Center of Efficient Utilization for Industrial Waste, School of Chemistry and Chemical Engineering, Guizhou University, Institute of Dual-carbon and New Energy Technology Innovation and Development of Guizhou Province, Guiyang, Guizhou 550025, China. Electronic address:
Coordinating the interfacial interaction between Pt-based nanoparticles (NPs) and supports is a significant strategy for the modulation of d-orbital electronic configuration and the adsorption behaviors of intermediates, which is of critical importance for boosting electrocatalytic performance. Herein, we demonstrated a specific synergy effect between the ordered PtFe intermetallic and neighboring oxygen vacancies (Ov), which provides an "ensemble reaction pool" to balance the barriers of both the activity, stability, and CO poisoning issues for the methanol oxidation reaction (MOR). In our proposed "ensemble reaction pool", the deprotonation of methanol occurs on the Pt site to form the intermediate *CO, where the strain derived from the PtFe intermetallic could alter the d-orbital electronic configuration of Pt, intrinsically weakening the *CO adsorption energy, and Ov in CeO promote hydroxyl species (*OH) adsorption, which will react with *CO, facilitating the dissociative adsorption of *CO, thus cooperatively enhancing the performance of MOR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!