Universal scaling laws can guide the understanding of new phenomena, and for cuprate high-temperature superconductivity the influential Uemura relation showed, early on, that the maximum critical temperature of superconductivity correlates with the density of the superfluid measured at low temperatures. Here we show that the charge content of the bonding orbitals of copper and oxygen in the ubiquitous CuO2 plane, measured with nuclear magnetic resonance, reproduces this scaling. The charge transfer of the nominal copper hole to planar oxygen sets the maximum critical temperature. A three-dimensional phase diagram in terms of the charge content at copper as well as oxygen is introduced, which has the different cuprate families sorted with respect to their maximum critical temperature. We suggest that the critical temperature could be raised substantially if one were able to synthesize materials that lead to an increased planar oxygen hole content at the expense of that of planar copper.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4859060 | PMC |
http://dx.doi.org/10.1038/ncomms11413 | DOI Listing |
Sci Rep
December 2024
Gateway Antarctica, University of Canterbury, Christchurch, New Zealand.
The Tibetan Plateau is home to numerous glaciers that are important for freshwater supply and climate regulation. These glaciers, which are highly sensitive to climatic variations, serve as vital indicators of climate change. Understanding glacier-fed hydrological systems is essential for predicting water availability and formulating climate adaptation strategies.
View Article and Find Full Text PDFNat Commun
December 2024
Department of Chemical Engineering, Electrochemical Innovation Lab, University College London, London, UK.
High-temperature proton exchange membrane fuel cells (HT-PEMFCs) offer solutions to challenges intrinsic to low-temperature PEMFCs, such as complex water management, fuel inflexibility, and thermal integration. However, they are hindered by phosphoric acid (PA) leaching and catalyst migration, which destabilize the critical three-phase interface within the membrane electrode assembly (MEA). This study presents an innovative approach to enhance HT-PEMFC performance through membrane modification using picosecond laser scribing, which optimises the three-phase interface by forming a graphene-like structure that mitigates PA leaching.
View Article and Find Full Text PDFACS Nano
December 2024
Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea.
Ultrasmall-scale semiconductor devices (≤5 nm) are advancing technologies, such as artificial intelligence and the Internet of Things. However, the further scaling of these devices poses critical challenges, such as interface properties and oxide quality, particularly at the high-/semiconductor interface in metal-oxide-semiconductor (MOS) devices. Existing interlayer (IL) methods, typically exceeding 1 nm thickness, are unsuitable for ultrasmall-scale devices.
View Article and Find Full Text PDFEcol Lett
January 2025
Centre for Biological Diversity, School of Biology, University of St Andrews, St Andrews, UK.
Given that reproductive physiology is highly sensitive to thermal stress, there is increasing concern about the effects of climate change on animal fertility. Even a slight reduction in fertility can have consequences for population growth and survival, so it is critical to better understand and predict the potential effects of climate change on reproductive traits. We synthesised 1894 effect sizes across 276 studies on 241 species to examine thermal effects on fertility in aquatic animals.
View Article and Find Full Text PDFEcol Lett
January 2025
Department of Biology, University of Oxford, Oxford, UK.
Interactions between species pose considerable challenges for forecasting the response of ecological communities to global changes. Coexistence theory could address this challenge by defining the conditions species can or cannot persist alongside competitors. However, although coexistence theory is increasingly deployed for projections, these frameworks have rarely been subjected to critical multigenerational validation tests.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!