The aim of the present study was to investigate the role of recombinant human neuregulin-1β (rhNRG-1β) in the repair of the radiation-induced damage of myocardial cells and the underlying mechanism. Rats were divided into the radiotherapy alone group, the rhNRG-1β group (radiotherapy with rhNRG‑1β treatment) and the Herceptin group (radiotherapy with Herceptin treatment), and their myocardial cells were analyzed. The morphology of the myocardial cells was observed under an optical microscope, and the expression of γ‑H2AX and p53 was analyzed using immunohistochemistry and western blot analysis. Damage to the myocardial cells was identified in the three groups following radiation treatment, which was identified by cell swelling and altered morphology. The integrated optical density values of γ‑H2AX in the radiotherapy alone, rhNRG‑1β and Herceptin groups were 50.96±5.548, 27.63±10.61 and 76.12±2.084, respectively. The OD of the radiotherapy alone group was significantly higher than that of the rhNRG‑1β treated group (P<0.0001), and the value of the Herceptin group was significantly higher than that of the radiotherapy alone group (P<0.0001). The p53 level in the rhNRG‑1β group was less than that of the radiotherapy alone group (P<0.001), and was higher in the Herceptin group compared with the radiotherapy alone group (P<0.0001). Thus, rhNRG‑1β can ameliorate radiotherapy-induced myocardial cell injury, predominantly by enhancing myocardial cell DNA repair, inhibiting cell apoptosis and improving myocardial function. The results of this study in myocardial cells suggest that patients with thoracic cancer may benefit from treatment with rhNRG‑1β for the repair of the radiation-induced damage of myocardial cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3892/mmr.2016.5207 | DOI Listing |
Theranostics
January 2025
State Key Laboratory of Cardiovascular Diseases and Medical Innovation Center, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, 200120, China.
Lower vertebrates and some neonatal mammals are known to possess the ability to regenerate cardiomyocyte and fully recover after heart injuries within a limited period. Understanding the molecular mechanisms of heart regeneration and exploring new ways to enhance cardiac regeneration hold significant promise for therapeutic intervention of heart failure. Sphingosine 1-phospahte receptor 1 (S1PR1) is highly expressed in cardiomyocytes and plays a crucial role in heart development and pathological cardiac remodeling.
View Article and Find Full Text PDFJ Cardiothorac Surg
January 2025
The First Hospital of Lanzhou University, Lanzhou, China.
Background: This article aims to use high-throughput sequencing to identify miRNAs associated with ferroptosis in myocardial ischemia-reperfusion injury, select a target miRNA, and investigate its role in H9C2 cells hypoxia-reoxygenation injury.
Methods: SD rats and H9C2 cells were used as subjects. ELISA kits quantified MDA, SOD, GSH, LDH, and ferritin levels.
J Transl Med
January 2025
Department of Anatomy & Embryology, Leiden University Medical Center, P.O. Box 9600, Postal Zone: S-1-P, 2300 RC, Leiden, The Netherlands.
Background: Prenatal development of autonomic innervation of sinus venosus-related structures might be related to atrial arrhythmias later in life. Most of the pioneering studies providing embryological background are conducted in animal models. To date, a detailed comparison with the human cardiac autonomic nervous system (cANS) is lacking.
View Article and Find Full Text PDFPLoS One
January 2025
Mandel Center for Heart and Vascular Research, The Duke Cardiovascular Research Center, Duke University Medical Center, Durham, NC, United States of America.
Early events in the reprogramming of fibroblasts to cardiac muscle cells are unclear. While various histone undergo modification and re-positioning, and these correlate with the activity of certain genes, it is unknown if these events are causal or happen in response to reprogramming. Histone modification and re-positioning would be expected to open up chromatin on lineage-specific genes and this can be ascertained by studying nucleosome architecture.
View Article and Find Full Text PDFAdv Mater
January 2025
State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China.
Replicating the structural and functional features of native myocardium, particularly its high-density cellular alignment and efficient electrical connectivity, is essential for engineering functional cardiac tissues. Here, novel electrohydrodynamically printed InterPore microfibrous lattices with anisotropic architectures are introduced to promote high-density cellular alignment and enhanced tissue interconnectivity. The interconnected pores in the microfibrous lattice enable dynamic, cell-mediated remodeling of fibrous hydrogels, resulting in continuous, mechanically stable tissue bundles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!