Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 143
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3098
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Severity: Warning
Message: Attempt to read property "Count" on bool
Filename: helpers/my_audit_helper.php
Line Number: 3100
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3100
Function: _error_handler
File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Hydrogen was produced from steam-exploded corn stover by using a combination of the cellulolytic bacterium Clostridium cellulolyticum and non-cellulolytic hydrogen-producing bacteria. The highest hydrogen yield of the co-culture system with C. cellulolyticum and Citrobacter amalonaticus reached 51.9 L H2/kg total solid (TS). The metabolites from the co-culture system were significantly different from those of the mono-culture systems. Formate, which inhibits the growth of C. cellulolyticum, could be consumed by the hydrogen-evolving bacteria, and transformed into hydrogen. Glucose and xylose were released from corn stover via hydrolysis by C. cellulolyticum and were quickly utilized in dark fermentation with the co-cultured hydrogen-producing bacteria. Because the hydrolysis of corn stover by C. cellulolyticum was much slower than the utilization of glucose and xylose by the hydrogen-evolving bacteria, the sugar concentrations were always maintained at low levels, which favored a high hydrogen molar yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jbiosc.2016.03.014 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!