Background: Although vagal nerve stimulation (VNS) benefits patients with chronic heart failure (CHF), the optimal dose of VNS remains unknown. In clinical trials, adverse symptoms limited up-titration. In this study, we evaluated the impact of various voltages of VNS which were titrated below symptom threshold on cardiac function and CHF parameters in rat myocardial infarction (MI) models.
Methods And Results: We randomly allocated MI rats to vagal (VNS; n = 41) and sham (Sham; n = 16) stimulation groups. We stimulated the right vagal nerve with 20 Hz at 3 different voltages for 4 weeks. We defined Max as the highest voltage that did not evoke any symptom, Half as one-half of Max, and Quarter as one-fourth of Max. All 3 VNS groups significantly reduced biventricular weight compared with Sham (P < .05). In contrast, only Half decreased left ventricular (LV) end-diastolic pressure (Half: 17.5 ± 2.0 mm Hg; Sham: 24.2 ± 1.2 mm Hg; P < .05) and increased LV ejection fraction (Half: 37.9 ± 3.1%; Sham: 28.4 ± 2.3%,-P < .05) and LV maximum +dP/dt (Half: 5918.6 ± 2.0 mm/Hg/s; Sham: 5001.2 ± 563.2 mm Hg/s; P < .05). The number of large vagal nerve fibers was reduced with Max (Max: 163.1 ± 43.0 counts/bundle; Sham: 360.0 ±61.6 counts/bundle; P < .05), indicating significant neural damage by VNS.
Conclusion: The optimal titration of VNS would maximize benefits for CHF and minimize adverse effects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cardfail.2016.04.021 | DOI Listing |
Scand J Pain
January 2024
Crean College of Health and Behavioral Sciences, Department of Physical Therapy, Chapman University, Irvine, United States.
Objectives: Autonomic regulation has been identified as a potential regulator of pain via vagal nerve mediation, assessed through heart rate variability (HRV). Non-invasive vagal nerve stimulation (nVNS) and heart rate variability biofeedback (HRVB) have been proposed to modulate pain. A limited number of studies compare nVNS and HRVB in persons with chronic pain conditions.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
VIB-UGent Center for Inflammation Research, Ghent, Belgium.
Background: The brain is shielded from the peripheral circulation by central nervous system (CNS) barriers, comprising the well-known blood-brain barrier (BBB) and the less recognized blood-cerebrospinal fluid (CSF) barrier located within the brain ventricles. The gut microbiota represents a diverse and dynamic population of microorganisms that can influence the health of the host, including the development of neurological disorders like Alzheimer's disease (AD). However, the intricate mechanisms governing the interplay between the gut and brain remain elusive, and the means by which gut-derived signals traverse the CNS barriers remain unclear.
View Article and Find Full Text PDFNat Rev Cardiol
January 2025
Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany.
Exp Neurol
December 2024
Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, USA; Stanford Stroke Center, Stanford University School of Medicine, Stanford, CA, USA. Electronic address:
Despite substantial advances in the acute management of stroke, it remains a leading cause of adult disability and mortality worldwide. Currently, the reperfusion modalities thrombolysis and thrombectomy benefit only a fraction of patients in the hyperacute phase of ischemic stroke. Thus, with the exception of vagal nerve stimulation combined with intensive physical therapy, there are no approved neuroprotective/neurorestorative therapies for stroke survivors.
View Article and Find Full Text PDFFront Cell Infect Microbiol
December 2024
Clinical and Research Infectious Diseases Department, National Institute for Infectious Diseases Lazzaro Spallanzani Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Rome, Italy.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!