Electrocatalysts play an important role in catalyzing the kinetics for oxygen reduction and oxygen evolution reactions for many air-based energy storage and conversion devices, such as metal-air batteries and fuel cells. Although noble metals have been extensively used as electrocatalysts, their limited natural abundance and high costs have motivated the search for more cost-effective catalysts. Oxides are suitable candidates since they are relatively inexpensive and have shown reasonably high activity for various electrochemical reactions. However, a lack of fundamental understanding of the reaction mechanisms has been a major hurdle toward improving electrocatalytic activity. Detailed studies of the oxide surface atomic structure and chemistry (e.g., cation migration) can provide much needed insights for the design of highly efficient and stable oxide electrocatalysts. In this Account, we focus on recent advances in characterizing strontium (Sr) cation segregation and enrichment near the surface of Sr-substituted perovskite oxides under different operating conditions (e.g., high temperature, applied potential), as well as their influence on the surface oxygen exchange kinetics at elevated temperatures. We contrast Sr segregation, which is associated with Sr redistribution in the crystal lattice near the surface, with Sr enrichment, which involves Sr redistribution via the formation of secondary phases. The newly developed coherent Bragg rod analysis (COBRA) and energy-modulated differential COBRA are uniquely powerful ways of providing information about surface and interfacial cation segregation at the atomic scale for these thin film electrocatalysts. In situ ambient pressure X-ray photoelectron spectroscopy (APXPS) studies under electrochemical operating conditions give additional insights into cation migration. Direct COBRA and APXPS evidence for surface Sr segregation was found for La1-xSrxCoO3-δ and (La1-ySry)2CoO4±δ/La1-xSrxCoO3-δ oxide thin films, and the physical origin of segregation is discussed in comparison with (La1-ySry)2CoO4±δ/La1-xSrxCo0.2Fe0.8O3-δ. Sr enrichment in many electrocatalysts, such as La1-xSrxMO3-δ (M = Cr, Co, Mn, or Co and Fe) and Sm1-xSrxCoO3, has been probed using alternative techniques, including low energy ion scattering, secondary ion mass spectrometry, and X-ray fluorescence-based methods for depth-dependent, element-specific analysis. We highlight a strong connection between cation segregation and electrocatalytic properties, because cation segregation enhances oxygen transport and surface oxygen exchange kinetics. On the other hand, the formation of cation-enriched secondary phases can lead to the blocking of active sites, inhibiting oxygen exchange. With help from density functional theory, the links between cation migration, catalyst stability, and catalytic activity are provided, and the oxygen p-band center relative to the Fermi level can be identified as an activity descriptor. Based on these findings, we discuss strategies to increase a catalyst's activity while maintaining stability to design efficient, cost-effective electrocatalysts.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.accounts.5b00555 | DOI Listing |
ACS Appl Energy Mater
December 2024
School of Chemistry, University of Bristol, Cantocks Close, BS8 1TS Bristol, U.K.
Rationalizing the role of chemical interactions in the precursor solutions on the structure, morphology, and performance of thin-film CuZnSn(S,Se) (CZTSSe) is key for the development of bifacial and other photovoltaic (PV) device architectures designed by scalable solution-based methods. In this study, we uncover the impact of dimethylformamide (DMF) and isopropanol (IPA) solvent mixtures on cation complexation and rheology of the precursor solution, as well as the corresponding morphology, composition, and PV performance of CZTSSe thin-film grown on fluorine-doped tin oxide (FTO). We find that increasing the proportion of IPA leads to a nonlinear increase in dynamic viscosity due to the strong repulsion between DMF and IPA, which is characterized by an interaction cohesion parameter of 3.
View Article and Find Full Text PDFNanotechnology
December 2024
Instituto de Nanociencia y Nanotecnología (CONICET-CNEA), Gral. Paz 1499 - San Martín - Argentina, BUENOS AIRES, 1650, ARGENTINA.
Our study demonstrates that strong cationic segregation can occur in amorphous complex oxide memristors during electrical operation. With the help of analytic techniques, we observed that switching the electrical stimulation from voltage to current significantly prevents structural changes and cation segregation at the nanoscale, improving also the device cycle-to-cycle variability. These findings could contribute to the design of more reliable oxide-based memristors and underscore the crucial effect that has the type of electrical stimulation applied to the devices on their integrity and reliability.
View Article and Find Full Text PDFSmall
December 2024
Chemistry Department, University of Pavia, via Taramelli 16, Pavia, 27100, Italy.
The temperature-resolved structure evolution of quinary and quaternary equimolar oxides containing Mg, Ni, Zn, Co, and Cu is investigated by in situ synchrotron diffraction. Important structural modifications occur already at mild temperatures and depend on the elements involved. All quaternary compounds with χ(Cu) = 0.
View Article and Find Full Text PDFJ Synchrotron Radiat
January 2025
Department of Physics, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
3D mixed perovskites have achieved substantial success in boosting solar cell efficiency, but the complicated perovskite crystal formation pathway remains mysterious. Here we present detailed crystallization kinetics of mixed perovskites FAMAPb(IBr), where FA is formamidinium and MA is methylammonium, with the addition of Cs to form a triple cation perovskite (3-CAT), in a comparison with the perovskite building block MAPbI (MAPI) via static grazing-incidence wide-angle X-ray scattering (GIWAXS) and micro-diffraction measurements. Spin-coated films produced α-perovskite peaks with no PbI or δ-intermediate phases, which was a promising result for the 3-CAT perovskite from micro-diffraction measurements.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
Department of Surface and Plasma Science, Charles University, Prague 18000, Czech Republic.
Perovskites exhibit outstanding performance in applications such as photocatalysis, electrochemistry, or photovoltaics, yet their practical use is hindered by the instability of these materials under operating conditions, specifically caused by the segregation of alkali cations toward the surface. The problem arises from the bulk strain related to different cation sizes, as well as the inherent electrostatic instability of perovskite surfaces. Here, we focus on atomistic details of the surface-driven process of interlayer switching of alkali atoms at the inorganic perovskite surface.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!