APOBEC3A cytidine deaminase induces site-specific C-to-U RNA editing of hundreds of genes in monocytes exposed to hypoxia and/or interferons and in pro-inflammatory macrophages. To examine the impact of APOBEC3A overexpression, we transiently expressed APOBEC3A in HEK293T cell line and performed RNA sequencing. APOBEC3A overexpression induces C-to-U editing at more than 4,200 sites in transcripts of 3,078 genes resulting in protein recoding of 1,110 genes. We validate recoding RNA editing of genes associated with breast cancer, hematologic neoplasms, amyotrophic lateral sclerosis, Alzheimer disease and primary pulmonary hypertension. These results highlight the fundamental impact of APOBEC3A overexpression on human transcriptome by widespread RNA editing.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5449087PMC
http://dx.doi.org/10.1080/15476286.2016.1184387DOI Listing

Publication Analysis

Top Keywords

rna editing
16
apobec3a overexpression
12
c-to-u rna
8
impact apobec3a
8
apobec3a
6
rna
5
editing
5
genes
5
transient overexpression
4
overexpression exogenous
4

Similar Publications

Peptide nucleic acids (PNA), synthetic molecules comprising a peptide-like backbone and natural and unnatural nucleobases, have garnered significant attention for their potential applications in gene editing and other biomedical fields. The unique properties of PNA, particularly enhanced stability/specificity/affinity towards targeted DNA and RNA sequences, achieved significant attention recently for gene silencing, gene correction, antisense therapy, drug delivery, biosensing and other various diagnostic aspects. This review explores the structure, properties, and potential of PNA in transforming genetic engineering including potent biomedical challenges.

View Article and Find Full Text PDF

RNA-specific nucleotidyltransferases (rNTrs) add nontemplated nucleotides to the 3 end of RNA. Two noncanonical rNTRs that are thought to be poly(A) polymerases (PAPs) have been identified in the mitochondria of trypanosomes - KPAP1 and KPAP2. KPAP1 is the primary polymerase that adds adenines (As) to trypanosome mitochondrial mRNA 3 tails, while KPAP2 is a non-essential putative polymerase whose role in the mitochondria is ambiguous.

View Article and Find Full Text PDF

Dual sgRNA-directed knockout gene expression using CRISPR/Cas9 technology for editing gene in triple-negative breast cancer.

Narra J

December 2024

Animal Research Facilities, Indonesia Medical Education and Research Institute (IMERI), Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia.

Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease 9 (CRISPR/Cas9) offers a robust approach for genome manipulation, particularly in cancer therapy. Given its high expression in triple-negative breast cancer (TNBC), targeting with CRISPR/Cas9 holds promise as a therapeutic strategy. The aim of this study was to design specific single guide ribonucleic acid (sgRNA) for CRISPR/Cas9 to permanently knock out the gene, exploring its potential as a therapeutic approach in breast cancer while addressing potential off-target effects.

View Article and Find Full Text PDF

Comparative organelle genomics in Daphniphyllaceae reveal phylogenetic position and organelle structure evolution.

BMC Genomics

January 2025

State Key Laboratory of Hybrid Rice, Laboratory of Plant Systematics and Evolutionary Biology, College of Life Sciences, Wuhan University, Wuhan, 430072, China.

The family Daphniphyllaceae has a single genus, and no relevant comparative phylogenetic study has been reported on it. To explore the phylogenetic relationships and organelle evolution mechanisms of Daphniphyllaceae species, we sequenced and assembled the chloroplast and mitochondrial genomes of Daphniphyllum macropodum. We also conducted comparative analyses of organelles in Daphniphyllaceae species in terms of genome structure, phylogenetic relationships, divergence times, RNA editing events, and evolutionary rates, etc.

View Article and Find Full Text PDF

The international symposium ASOBIOTICS 2024 brought together scientists across disciplines to discuss the challenges of advancing antibacterial antisense oligomers (ASOs) from basic research to clinical application. Hosted by the Helmholtz Institute for RNA-based Infection Research (HIRI) in Wurzburg, Germany, on September 12-13th, 2024, the event featured presentations covering major milestones and current challenges of this antimicrobial technology and its applications against pathogens, commensals, and bacterial viruses. General design principles and modification of ASOs based on peptide nucleic acid (PNA) or phosphorodiamidate-morpholino-oligomer (PMO) chemistry, promising cellular RNA targets, new delivery technologies, as well as putative resistance mechanisms were discussed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!