Since vasodilators enhance the peritoneal solute transport, the influence of intraperitoneal papaverine was studied. To verify the action of papaverine on peritoneal transport we selected 33 patients on acute peritoneal dialysis and performed two 2-hour cycles with 2000 cc of a 1.5% solution, adding 40 mg of papaverine to the fourth cycle. At the end of the third and fourth cycles blood and dialysate were drawn for urea, creatinine, glucose and protein levels, using peritoneal clearances of urea and creatinine, glucose absorption and net protein loss to compare the two cycles. We found no significant change in solute transport (urea clearance p greater than 0.0.5; creatinine clearance, protein loss and glucose absorption p greater than 0.1).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/BF02549910 | DOI Listing |
J Am Chem Soc
January 2025
State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China.
Metal-nonaqueous solution interfaces, a key to many electrochemical technologies, including lithium metal batteries, are much less understood than their aqueous counterparts. Herein, on several metal-nonaqueous solution interfaces, we observe capacitances that are 2 orders of magnitude lower than the usual double-layer capacitance. Combining electrochemical impedance spectroscopy, atomic force microscopy, and physical modeling, we ascribe the ultralow capacitance to an interfacial layer of 10-100 nm above the metal surface.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Materials Science and Engineering, Shanghai JiaoTong University 800 Dongchuan Road, Shanghai 200240, P. R. China.
Solid polymer electrolytes (SPEs) with excellent ionic conductivity and a wide electrochemical stability window are critical for high-energy lithium metal batteries (LMBs). However, the widespread application of polymer electrolytes is severely limited by inadequate room-temperature ionic conductivity, sluggish interfacial charge transport, and uncontrolled reactions at the electrode/electrolyte interface. Herein, we present a uniform polymerized 1,3-dioxolane (PDOL) composite solid polymer electrolyte (PDOL-S/F-nano LiF CSE) that satisfies these requirements through the in situ catalytic polymerization effect of nano LiF on the polymerization of 1,3-dioxolane-based electrolytes.
View Article and Find Full Text PDFGut
January 2025
Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai, China
Background: Fasting-mimicking diet (FMD) boosts the antitumour immune response in patients with colorectal cancer (CRC). The gut microbiota is a key host immunity regulator, affecting physiological homeostasis and disease pathogenesis.
Objective: We aimed to investigate how FMD protects against CRC via gut microbiota modulation.
Kidney360
November 2024
The Departments of Medicine, Veterans Affairs Palo Alto Healthcare System and Stanford University, Palo Alto, CA, USA 94304.
Background: Hemodialysis may excessively remove valuable solutes. Untargeted metabolomics data from a prior study suggested that ergothioneine was depleted in the plasma of hemodialysis subjects. Ergothioneine is a dietary-derived solute with antioxidant properties.
View Article and Find Full Text PDFPLoS One
January 2025
School of Art and Design, Shenyang Aerospace University, Shenyang, China.
As urbanization intensifies and the need for sustainable transportation grows, Mobility as a Service (MaaS) emerges as a promising solution to urban mobility challenges. This study seeks to explore the underlying mechanisms of MaaS from a sustainability perspective and to assess its impact on service experience and user satisfaction. Additionally, it examines how user satisfaction influences the broader adoption of MaaS.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!