Resveratrol has various attractive bioactivities, such as prevention of cancer, neurodegenerative disorders, and obesity-related diseases. Therefore, identifying its direct binding proteins is expected to discover druggable targets. Sirtuin 1 and phosphodiesterases have so far been found as the direct molecular targets of resveratrol. We herein identified 11 novel resveratrol-binding proteins, including the DEAD (Asp-Glu-Ala-Asp) box helicase 5 (DDX5, also known as p68), using resveratrol-immobilized beads. Treatment with resveratrol induced degradation of DDX5 in prostate cancer cells. Depletion of DDX5 caused apoptosis by inhibiting mammalian target of rapamycin complex 1 (mTORC1) signaling. Moreover, knockdown of DDX5 attenuated the inhibitory activities of resveratrol against mTORC1 signaling and cancer cell growth. These data show that resveratrol directly targets DDX5 and induces cancer cell death by inhibiting the mTORC1 pathway.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4917653 | PMC |
http://dx.doi.org/10.1038/cddis.2016.114 | DOI Listing |
Discov Nano
December 2024
Department of Surgery, Level 7, Bridge E, Faculty of Health Sciences, Steve Biko Academic Hospital, University of Pretoria, Private Bag X323, Arcadia, 0007, South Africa.
Glioblastoma (GBM) is an aggressive brain tumor characterized by cellular and molecular diversity. This diversity presents significant challenges for treatment and leads to poor prognosis. Surgery remains the primary treatment of choice for GBMs, but it often results in tumor recurrence due to complex interactions between GBM cells and the peritumoral brain zone.
View Article and Find Full Text PDFBMC Res Notes
December 2024
Department of Vegetable Life Science, Graduate School of Medicine, Hirosaki University, 5 Zaifu-cho, Hirosaki, 036-8562, Aomori, Japan.
Objective: Various plants have been reported to contain compounds that promote the transcriptional activity of Nuclear factor erythroid 2-related factor 2 (Nrf2) to induce a set of xenobiotic detoxifying enzymes, such as NAD(P)H-quinone acceptor oxidoreductase 1 (NQO1), via the antioxidant response element (ARE). While conventional methods for evaluating Nrf2 induction potency include measurement of NQO1 activity, an ARE luciferase reporter assay was recently developed to specifically assess Nrf2 induction potency of compounds of interest. In this study, we compared the abilities of these two assays to evaluate and determine Nrf2 induction potency of plant-derived compounds.
View Article and Find Full Text PDFBiomacromolecules
December 2024
Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37, Guoxue Road, Chengdu 610041, China.
Intervertebral disc degeneration is characterized by a localized, chronic inflammatory response leading to a synthesis/catabolism imbalance within the nucleus pulposus (NP) and progressive functional impairment within the NP. Polyphenol molecules have been widely used in anti-inflammatory therapies in recent years; therefore, we designed an injectable, temperature-sensitive hydrogel PLGA-PEG-PLGA-based drug delivery system for local and sustained delivery of two drugs tannic acid (TA) and resveratrol (Res), with the hydrogel carrying TA directly and Res indirectly (carried directly by inflammation-responsive nanoparticles). The delivery system presents good injectability at room temperature and forms a gel in situ upon entering the intervertebral disc.
View Article and Find Full Text PDFPLoS One
December 2024
Biological Science Research, Kao Corporation, Ichikai-machi, Haga-gun, Tochigi, Japan.
Antimicrobial peptides (AMPs) are crucial for protecting human skin from infection. Therefore, the expression levels of beneficial AMPs such as ribonuclease 7 (RNase 7) must be appropriately regulated in healthy human skin. However, there is limited understanding regarding the regulating AMP expression, especially when using applications directly to healthy human skin.
View Article and Find Full Text PDFCells
November 2024
Institute of Experimental Pharmacology and Toxicology, Centre of Experimental Medicine of the Slovak Academy of Sciences, 841 04 Bratislava, Slovakia.
Sarco/endoplasmic reticulum Ca-ATPase (SERCA) is an important regulatory protein responsible for maintaining calcium homeostasis within cells. Impairment of SERCA associated with activity/expression decrease has been implicated in multiple chronic conditions, including cardiovascular diseases, diabetes, cancer, neurodegenerative diseases, and skeletal muscle pathologies. Natural polyphenols have been recognized to interact with several target proteins involving SERCA.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!