The large-scale mining and high-throughput genotyping of novel gene-based allelic variants in natural mapping population are essential for association mapping to identify functionally relevant molecular tags governing useful agronomic traits in chickpea. The present study employs an alternative time-saving, non-laborious and economical pool-based EcoTILLING approach coupled with agarose gel detection assay to discover 1133 novel SNP allelic variants from diverse coding and regulatory sequence components of 1133 transcription factor (TF) genes by genotyping in 192 diverse desi and kabuli chickpea accessions constituting a seed weight association panel. Integrating these SNP genotyping data with seed weight field phenotypic information of 192 structured association panel identified eight SNP alleles in the eight TF genes regulating seed weight of chickpea. The associated individual and combination of all SNPs explained 10-15 and 31% phenotypic variation for seed weight, respectively. The EcoTILLING-based large-scale allele mining and genotyping strategy implemented for association mapping is found much effective for a diploid genome crop species like chickpea with narrow genetic base and low genetic polymorphism. This optimized approach thus can be deployed for various genomics-assisted breeding applications with optimal expense of resources in domesticated chickpea. The seed weight-associated natural allelic variants and candidate TF genes delineated have potential to accelerate marker-assisted genetic improvement of chickpea.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4835497PMC
http://dx.doi.org/10.3389/fpls.2016.00450DOI Listing

Publication Analysis

Top Keywords

allelic variants
16
seed weight
16
association mapping
12
functionally relevant
8
natural allelic
8
variants candidate
8
candidate genes
8
governing agronomic
8
agronomic traits
8
traits chickpea
8

Similar Publications

Acute lymphoblastic leukemia (ALL) is the most common childhood cancer, with Hispanic/Latino children having a higher incidence of ALL than other racial/ethnic groups. Genetic variants, particularly ones found enriched in Indigenous American (IA)-like ancestry and inherited by Hispanics/Latinos, may contribute to this disparity. In this study, we characterized the impact of IA-like ancestry on overall ALL risk and the frequency and effect size of known risk alleles in a large cohort of self-reported Hispanic/Latino individuals.

View Article and Find Full Text PDF

Van der Woude syndrome (VWS) is an autosomal dominant disorder characterized by lower lip pits and orofacial clefts (OFCs). With a prevalence of approximately 1 in 35,000 live births, it is the most common form of syndromic clefting and may account for ~2% of all OFCs. The majority of VWS is attributed to genetic variants in IRF6 (~70%) or GRHL3 (~5%), leaving up to 25% of individuals with VWS without a molecular diagnosis.

View Article and Find Full Text PDF

Background: Clonal hematopoiesis of indeterminate potential (CHIP) is the age-related presence of expanded somatic clones secondary to leukemogenic driver mutations and is associated with cardiovascular (CV) disease and mortality. We sought to evaluate relationships between CHIP with cardiometabolic diseases and incident outcomes in high-risk individuals.

Methods: CHIP genotyping was performed in 8469 individuals referred for cardiac catheterization at Duke University (CATHGEN study) to identify variants present at a variant allele fraction (VAF) ≥2%.

View Article and Find Full Text PDF

Natural variation in MdNAC5 contributes to fruit firmness and ripening divergence in apple.

Hortic Res

January 2025

State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China.

Fruit firmness is an important trait for characterizing the quality and value of apple. It also serves as an indicator of fruit maturity, as it is a complex trait regulated by multiple genes. Resequencing techniques can be employed to elucidate variations in such complex fruit traits.

View Article and Find Full Text PDF

Primary testicular diffuse large B-cell lymphoma (PT-DLBCL) is a rare and aggressive lymphoma with molecular heterogeneity not well characterize. In this study, we performed next-generation sequencing analysis for a large number of DNA and RNA samples from patients with PT-DLBCL. DNA sequencing analysis identified ≥ 3 chromosomes with copy number variations (CNVs) and microsatellite instability as prognostic biomarkers, rather than mutations and genetic subtypes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!