Cnidarian-dinoflagellate symbioses are ecologically important and the subject of much investigation. However, our understanding of critical aspects of symbiosis physiology, such as the partitioning of total respiration between the host and symbiont, remains incomplete. Specifically, we know little about how the relationship between host and symbiont respiration varies between different holobionts (host-symbiont combinations). We applied molecular and biochemical techniques to investigate aerobic respiratory capacity in naturally symbiotic Exaiptasia pallida sea anemones, alongside animals infected with either homologous ITS2-type A4 Symbiodinium or a heterologous isolate of Symbiodinium minutum (ITS2-type B1). In naturally symbiotic anemones, host, symbiont, and total holobiont mitochondrial citrate synthase (CS) enzyme activity, but not host mitochondrial copy number, were reliable predictors of holobiont respiration. There was a positive association between symbiont density and host CS specific activity (mg protein(-1)), and a negative correlation between host- and symbiont CS specific activities. Notably, partitioning of total CS activity between host and symbiont in this natural E. pallida population was significantly different to the host/symbiont biomass ratio. In re-infected anemones, we found significant between-holobiont differences in the CS specific activity of the algal symbionts. Furthermore, the relationship between the partitioning of total CS activity and the host/symbiont biomass ratio differed between holobionts. These data have broad implications for our understanding of cnidarian-algal symbiosis. Specifically, the long-held assumption of equivalency between symbiont/host biomass and respiration ratios can result in significant overestimation of symbiont respiration and potentially erroneous conclusions regarding the percentage of carbon translocated to the host. The interspecific variability in symbiont aerobic capacity provides further evidence for distinct physiological differences that should be accounted for when studying diverse host-symbiont combinations.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4834350 | PMC |
http://dx.doi.org/10.3389/fphys.2016.00128 | DOI Listing |
Am J Bot
January 2025
Pacific Biosciences Research Center, University of Hawai'i at Mānoa, Honolulu, HI, USA.
Premise: The ability of plants to adapt or acclimate to climate change is inherently linked to their interactions with symbiotic microbes, notably fungi. However, it is unclear whether fungal symbionts from different climates have different impacts on the outcome of plant-fungal interactions, especially under environmental stress.
Methods: We tested three provenances of fungal inoculum (originating from dry, moderate or wet environments) with one host plant genotype exposed to three soil moisture regimes (low, moderate and high).
Neurol Neuroimmunol Neuroinflamm
March 2025
Yale School of Medicine Department of Neurology, New Haven, CT.
Background And Objectives: Gut microbial symbionts have been shown to influence the development of autoimmunity in multiple sclerosis (MS). Emerging research points to an important relationship between the microbial-IgA interface and MS pathophysiology. IgA-secreting B cells are observed in the MS brain, and shifts in gut bacteria-IgA binding have been described in some patients with MS.
View Article and Find Full Text PDFMol Plant Microbe Interact
January 2025
Université Claude Bernard Lyon 1, Laboratoire d'Écologie Microbienne, UMR CNRS 5557, UMR INRAE 1418, VetAgro Sup, Villeurbanne, France;
, able to establish symbiosis with mutualistic bacteria of the genus , is one of the main species in European riparian environments, where it performs numerous biological and socio-economic functions. However, riparian ecosystems face a growing threat from , a highly aggressive waterborne pathogen causing severe dieback in . To date, the tripartite interaction between the host plant, the symbiont and the pathogen remains unexplored but is critical for understanding how pathogen-induced stress influences the nodule molecular machinery and so on the host-symbiont metabolism.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Computational Biology, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland.
The clownfish - sea anemone system is a great example of symbiotic mutualism where host «toxicity» does not impact its symbiont partner, although the underlying protection mechanism remains unclear. The regulation of nematocyst discharge in cnidarians involves N-acetylated sugars like sialic acid, that bind chemoreceptors on the tentacles of sea anemones, leading to the release of stings. It has been suggested that clownfish could be deprived of sialic acid on their skin surface, sparing them from being stung and facilitating mutualism with sea anemones.
View Article and Find Full Text PDFMicrobiol Res
January 2025
College of Animal Sciences, Zhejiang University, Hangzhou 310058, China. Electronic address:
Social bees, with their specialized gut microbiota and societal transmission between individuals, provide an ideal model for studying host-gut microbiota interactions. While the functional disparities arising from strain-level diversity of gut symbionts and their effects on host health have been studied in Apis mellifera and bumblebees, studies focusing on host-specific investigations of individual strains across different honeybee hosts remain relatively unexplored. In this study, the complete genomic sequences of 17 strains of Gilliamella from A.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!