The oxygen isotope composition of leaf water imparts a signal to a range of molecules in the atmosphere and biosphere, but has been notoriously difficult to measure in studies requiring a large number of samples as a consequence of the labour-intensive extraction step. We tested a method of direct equilibration of water in fresh leaf samples with CO2 , and subsequent oxygen isotope analysis on an optical spectrometer. The oxygen isotope composition of leaf water measured by the direct equilibration technique was strongly linearly related to that of cryogenically extracted leaf water in paired samples for a wide range of species with differing anatomy, with an R(2) of 0.95. The somewhat more enriched values produced by the direct equilibration method may reflect lack of full equilibration with unenriched water in the vascular bundles, but the strong relationship across a wide range of species suggests that this difference can be adequately corrected for using a simple linear relationship.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.13962 | DOI Listing |
BMC Plant Biol
January 2025
Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.
Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.
View Article and Find Full Text PDFPlant Sci
January 2025
National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China. Electronic address:
Tryptophan-arginine-lysine-tyrosine (WRKY) transcription factors are essential regulators of drought tolerance in multiple plants. However, whether and how GhWRKY207 modulates cotton response to drought stress is unclear. In this study, we determined that GhWRKY207 expression was high in leaves and induced by drought stress.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Graduate Program in Food Science and Technology, Federal University of Paraíba, 58051-900 João Pessoa, Paraíba, Brazil. Electronic address:
This study aimed to investigate the impact of adding aroeira leaf extract (Schinus terebinthifolius Raddi) to a yam starch film matrix, focusing on the development of potentially active films and the evaluation of their physicochemical, mechanical, optical, and antioxidant properties. Films were produced using the casting method with varying extract concentrations (0, 3, 6, 12, and 15 %), yam starch (2 %), and glycerol (1 %). The antioxidant properties were analyzed by determining the total phenolic content, 2,2-Diphenyl-1-Picrylhydrazyl (DPPH) radical scavenging, ferric reducing power, and 2,2-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical elimination, which revealed a significant increase in antioxidant properties as the extract concentration increased.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Department of Environmental Management, Graduate School of Agriculture, Kindai University, Nara, Japan.
Efficient agricultural management often relies on farmers' experiential knowledge and demands considerable labor, particularly in regions with challenging terrains. To reduce these burdens, the adoption of smart technologies has garnered increasing attention. This study proposes a convolutional neural network (CNN)-based model as a decision-support tool for smart irrigation in orchard systems, focusing on persimmon cultivation in mountainous regions.
View Article and Find Full Text PDFEcology
January 2025
Center for Ecosystem Science and Society, Department of Biology, Northern Arizona University, Flagstaff, Arizona, USA.
Fungi play a crucial role in aquatic leaf litter decomposition. Aquatic fungi have long been thought to spend the majority of their lives in the water. Here, we explore the possibility of an amphibious life cycle, where phyllosphere fungi spend part of their life cycle in aquatic systems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!