Gelatin, derived from collagen, has both the mechanical properties required for tissue growth, as well the functional domains required for cell binding. In its natural state, gelatin derives its properties from a network of structured, intertwined, triple helical chains, which is stabilized by hydrogen bonds at temperatures below 37 °C. The mechanical properties of such a structure can be further controlled by additional enzymatic cross-linking. But, in contrast to simple polymer systems, the response to an imposed deformation is here determined by two competing factors: the establishment of the cross-linked mesh vs. the self-assembly of the fibrils into larger and stronger hierarchical structures. Therefore, properties deduced from the response to measurements such as rheology or swelling, are a combination of these two very different factors, hence a modeling is impossible unless more precise knowledge regarding the internal structure is available. The cryogenic-temperature scanning electron microscopy (cryo-SEM) was adopted to image the fully hydrated gelatin network in which distinct chain folding was observed at low densities, while cross-linked networks were observed at higher densities. Based on these images, a theoretical model which results in good agreement between the mesh sizes of both networks and their mechanical properties was developed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857098 | PMC |
http://dx.doi.org/10.1038/srep25495 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!