Minimally interactive segmentation of 4D dynamic upper airway MR images via fuzzy connectedness.

Med Phys

Division of Respiratory and Sleep Medicine, The Children's Hospital at Montefiore, Albert Einstein College of Medicine, Bronx, New York 10467.

Published: May 2016

Purpose: There are several disease conditions that lead to upper airway restrictive disorders. In the study of these conditions, it is important to take into account the dynamic nature of the upper airway. Currently, dynamic magnetic resonance imaging is the modality of choice for studying these diseases. Unfortunately, the contrast resolution obtainable in the images poses many challenges for an effective segmentation of the upper airway structures. No viable methods have been developed to date to solve this problem. In this paper, the authors demonstrate a practical solution by employing an iterative relative fuzzy connectedness delineation algorithm as a tool.

Methods: 3D dynamic images were collected at ten equally spaced instances over the respiratory cycle (i.e., 4D) in 20 female subjects with obstructive sleep apnea syndrome. The proposed segmentation approach consists of the following steps. First, image background nonuniformities are corrected which is then followed by a process to correct for the nonstandardness of MR image intensities. Next, standardized image intensity statistics are gathered for the nasopharynx and oropharynx portions of the upper airway as well as the surrounding soft tissue structures including air outside the body region, hard palate, soft palate, tongue, and other soft structures around the airway including tonsils (left and right) and adenoid. The affinity functions needed for fuzzy connectedness computation are derived based on these tissue intensity statistics. In the next step, seeds for fuzzy connectedness computation are specified for the airway and the background tissue components. Seed specification is needed in only the 3D image corresponding to the first time instance of the 4D volume; from this information, the 3D volume corresponding to the first time point is segmented. Seeds are automatically generated for the next time point from the segmentation of the 3D volume corresponding to the previous time point, and the process continues and runs without human interaction and completes in 10 s for segmenting the airway structure in the whole 4D volume.

Results: Qualitative evaluations performed to examine smoothness and continuity of motions of the entire upper airway as well as its transverse sections at critical anatomic locations indicate that the segmentations are consistent. Quantitative evaluations of the separate 200 3D volumes and the 20 4D volumes yielded true positive and false positive volume fractions around 95% and 0.1%, respectively, and mean boundary placement errors under 0.5 mm. The method is robust to variations in the subjective action of seed specification. Compared with a segmentation approach based on a registration technique to propagate segmentations, the proposed method is more efficient, accurate, and less prone to error propagation from one respiratory time point to the next.

Conclusions: The proposed method is the first demonstration of a viable and practical approach for segmenting the upper airway structures in dynamic MR images. Compared to registration-based methods, it effectively reduces error propagation and consequently achieves not only more accurate segmentations but also more consistent motion representation in the segmentations. The method is practical, requiring minimal user interaction and computational time.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4833751PMC
http://dx.doi.org/10.1118/1.4945698DOI Listing

Publication Analysis

Top Keywords

upper airway
28
fuzzy connectedness
16
time point
16
airway
10
airway structures
8
dynamic images
8
segmentation approach
8
intensity statistics
8
airway well
8
connectedness computation
8

Similar Publications

Pseudomonas aeruginosa is a Gram-negative bacterium that is notorious for airway infections in cystic fibrosis (CF) subjects. Bacterial quorum sensing (QS) coordinates virulence factor expression and biofilm formation at population level. Better understanding of QS in the bacterium-host interaction is required.

View Article and Find Full Text PDF

Study Objectives: Multilevel upper airway surgery is effective for some patients with obstructive sleep apnea (OSA), but prediction the response to surgery remains a challenge. The underlying endotypes of OSA include upper airway collapsibility, muscle compensation, loop gain, and the arousal threshold. This study aimed to explore the effect of surgery on polysomnography (PSG)-derived OSA endotypes and establish a surgical response prediction model.

View Article and Find Full Text PDF

Objectives: The current study was conducted to assess the volume of the tongue, oral cavity, and tongue/oral cavity and their correlation with the volume of the upper airway in cleft subjects compared with the control group.

Methods: The study population included 60 CBCT images from dental school. The sample comprised 30 unilateral cleft patients and 30 sex and age-matched healthy subjects.

View Article and Find Full Text PDF

Current understanding of viral dynamics of SARS-CoV-2 and host responses driving the pathogenic mechanisms in COVID-19 is rapidly evolving. Here, we conducted a longitudinal study to investigate gene expression patterns during acute SARS-CoV-2 illness. Cases included SARS-CoV-2 infected individuals with extremely high viral loads early in their illness, individuals having low SARS-CoV-2 viral loads early in their infection, and individuals testing negative for SARS-CoV-2.

View Article and Find Full Text PDF

Background: In patients with acute hypoxemic respiratory failure (AHRF) under mechanical ventilation, the change in pressure slope during a low-flow insufflation indicates a global airway opening pressure (AOP) needed to reopen closed airways and may be used for titration of positive end-expiratory pressure.

Objectives: To understand 1) if airways open homogeneously inside the lungs or significant regional AOP variations exist; 2) whether the pattern of the pressure slope change during low-flow insufflation can indicate the presence of regional AOP variations.

Methods: Using electrical impedance tomography, we recorded low-flow insufflation maneuvers (< 10 L/min) starting from end-expiratory positive pressure 0-5 cmHO.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!