Nesprins are a family of multi-isomeric scaffolding proteins that were originally identified at the nuclear envelope (NE), where they bind to lamin A/C, emerin, and SUN-domain containing proteins, to form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) complex that connects the NE to the actin cytoskeleton. However, nesprin genes also give rise to a variety of tissue-specific variants of different sizes with potential roles beyond the NE. These variants are generated through alternative initiation, termination, and splicing, which makes nesprin biology very complex to study due to the difficulty in generating specific antibodies and/or short interfering RNAs (siRNA) to particular isoforms. In order to distinguish genuine nesprin variants and eliminate confusion with degradation products of larger nesprin isoforms, in this chapter we discuss methods including 5' and 3' Rapid Amplification of cDNA Ends (RACE) and RT-PCR in combination with EST database searching, for identifying and validating putative nesprin isoforms. This information is essential to allow a better understanding of nesprin functions in different cell types.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/978-1-4939-3530-7_13 | DOI Listing |
J Invest Dermatol
November 2019
Department of Biosciences and Nutrition, Center for Innovative Medicine, Karolinska Institutet, Huddinge, Sweden. Electronic address:
Hutchinson-Gilford progeria syndrome (HGPS) is the result of a defective form of the lamin A protein called progerin. While progerin is known to disrupt the properties of the nuclear lamina, the underlying mechanisms responsible for the pathophysiology of HGPS remain less clear. Previous studies in our laboratory have shown that progerin expression in murine epidermal basal cells results in impaired stratification and halted development of the skin.
View Article and Find Full Text PDFMethods Mol Biol
December 2017
British Heart Foundation Centre of Research Excellence, Cardiovascular Division, King's College London, London, UK.
Nesprins are a family of multi-isomeric scaffolding proteins that were originally identified at the nuclear envelope (NE), where they bind to lamin A/C, emerin, and SUN-domain containing proteins, to form the LInker of Nucleoskeleton-and-Cytoskeleton (LINC) complex that connects the NE to the actin cytoskeleton. However, nesprin genes also give rise to a variety of tissue-specific variants of different sizes with potential roles beyond the NE. These variants are generated through alternative initiation, termination, and splicing, which makes nesprin biology very complex to study due to the difficulty in generating specific antibodies and/or short interfering RNAs (siRNA) to particular isoforms.
View Article and Find Full Text PDFMol Med Rep
January 2015
Department of Cardiovascular Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, P.R. China.
The aim of the present study was to investigate the expression of nesprin-1 protein in MSCs and its effects on the differentiation of rat bone-marrow mesenchymal stem cells (MSCs). Surface-associated antigens of MSCs were detected by flow cytometry. MSC differentiation was induced by treatment with 10 µmol/l 5-azacytidine.
View Article and Find Full Text PDFPLoS One
February 2015
Department of Aquatic Germplasm Resources, Zhejiang Wanli University, Ningbo, Zhejiang Province, P.R China.
Background: The nuclear lamina is a key determinant of nuclear architecture, integrity and functionality in metazoan nuclei. Mutations in the human lamin A gene lead to highly debilitating genetic diseases termed as laminopathies. Expression of lamin A mutations or reduction in levels of endogenous A-type lamins leads to nuclear defects such as abnormal nuclear morphology and disorganization of heterochromatin.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!