In order to examine the preferred hydrogen-bonding pattern of various uracil derivatives, namely 5-(hydroxymethyl)uracil, 5-carboxyuracil and 5-carboxy-2-thiouracil, and for a conformational study, crystallization experiments yielded eight different structures: 5-(hydroxymethyl)uracil, C5H6N2O3, (I), 5-carboxyuracil-N,N-dimethylformamide (1/1), C5H4N2O4·C3H7NO, (II), 5-carboxyuracil-dimethyl sulfoxide (1/1), C5H4N2O4·C2H6OS, (III), 5-carboxyuracil-N,N-dimethylacetamide (1/1), C5H4N2O4·C4H9NO, (IV), 5-carboxy-2-thiouracil-N,N-dimethylformamide (1/1), C5H4N2O3S·C3H7NO, (V), 5-carboxy-2-thiouracil-dimethyl sulfoxide (1/1), C5H4N2O3S·C2H6OS, (VI), 5-carboxy-2-thiouracil-1,4-dioxane (2/3), 2C5H4N2O3S·3C6H12O3, (VII), and 5-carboxy-2-thiouracil, C10H8N4O6S2, (VIII). While the six solvated structures, i.e. (II)-(VII), contain intramolecular S(6) O-H...O hydrogen-bond motifs between the carboxy and carbonyl groups, the usually favoured R2(2)(8) pattern between two carboxy groups is formed in the solvent-free structure, i.e. (VIII). Further R2(2)(8) hydrogen-bond motifs involving either two N-H...O or two N-H...S hydrogen bonds were observed in three crystal structures, namely (I), (IV) and (VIII). In all eight structures, the residue at the ring 5-position shows a coplanar arrangement with respect to the pyrimidine ring which is in agreement with a search of the Cambridge Structural Database for six-membered cyclic compounds containing a carboxy group. The search confirmed that coplanarity between the carboxy group and the cyclic residue is strongly favoured.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S2053229616004861 | DOI Listing |
Sci Adv
January 2025
Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
A metamaterial absorber capable of swiftly altering its electromagnetic response in the microwave range offers adaptability to changing environments, such as tunable stealth capabilities. Inspired by the chameleon's ability to change color through the structural transformation of photonic lattice crystals, which shift the bandgaps of reflection and transmission of visible light, we designed a crisscross structure that transforms from an expanded to a collapsed form. This transformation enables a switch between broadband absorption and peak transmission in the microwave range (4 to 18 gigahertz).
View Article and Find Full Text PDFSci Adv
January 2025
Center for Microbiome Research of Med-X Institute, Shaanxi Provincial Key Laboratory of Sepsis in Critical Care Medicine, The First Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710061, China.
The rare metal element molybdenum functions as a cofactor in molybdoenzymes that are essential to life in almost all living things. Molybdate can be captured by the periplasmic substrate-binding protein ModA of ModABC transport system in bacteria. We demonstrate that ModA plays crucial roles in growth, multiple metabolic pathways, and ROS tolerance in .
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Structure Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China.
Circularly Polarized Light (CPL)-dependent anomalous photovoltaic effect (APVE), characterized by light helicity-manipulated steady photocurrent and above-bandgap photovoltage, has demonstrated significant potential in the fields of photoelectronic and photovoltaics. However, exploiting CPL-dependent APVE in chiral hybrid perovskites, a promising family with intrinsic chiroptical activity and non-centrosymmetric structure, remains challenging. Here, leveraging the flexible structural design of chiral alternating cations intercalation-type perovskites, CPL-dependent APV, for the first time, is achieved in chiral perovskites.
View Article and Find Full Text PDFLangmuir
January 2025
Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan.
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Center of Nanomaterials for Renewable Energy, State Key Laboratory of Electrical Insulation and Power Equipment, School of Electrical Engineering, Xi'an Jiaotong University, Xìan, Shaanxi 710049, China.
Prussian blue analogues (PBAs) show great promise as cathode candidates for aqueous zinc-ion batteries thanks to their high operating voltage, open-framework structure, and low cost. However, suffering from numerous vacancies and crystal water, the electrochemical performance of PBAs remains unsatisfactory, with limited capacity and poor cycle life. Here, a simple coprecipitation method is shown to synthesize well-crystallized cobalt hexacyanoferrate (CoHCF) with a small amount of water and high specific surface area.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!