Aquatic ecosystems are known to undergo fluctuations in nutrient levels as a result of both natural and anthropogenic processes. Changes in both extrinsic and intrinsic fluvial dynamics necessitate constant monitoring as anthropogenic alterations exert new pressures to previously stable river basins. In this study, we analyzed stream water and riparian zone soil phosphorous (P) dynamics in two third-order sub-watersheds of the lower Chesapeake Bay in Virginia, USA. The Ni River is predominantly forested (70 % forested), and Sugarland Run is a more human impacted (>45 % impervious surfaces) sub-watershed located in the suburbs of Washington D.C. Total stream P concentrations were measured during both high and low flows and Mehlich-3 methods were used to evaluate potential P fluxes in riparian soils. The results show total stream P concentrations in Sugarland Run ranged from 0.002 to 0.20 ppm, with an average of 0.054 ppm. In contrast, the forested Ni River had typical stream P concentrations <0.01 ppm. Total soil P was significantly higher in the more urbanized Sugarland Run basin (23.8 ± 2.1 ppm) compared to the Ni River basin (16 ± 3.7 ppm). Average stream bank erosion rates and corresponding cut-bank P flux rates were estimated to be 7.98 cm year(-1) and 361 kg P year(-1) for Ni River and 9.84 cm year(-1) and 11,600 kg P year(-1) for Sugarland Run, respectively. The significantly higher values of total P in the stream water and floodplain cut-banks of Sugarland Run suggests erosion and resuspension of previously deposited legacy sediments is an important processes in this human-impacted basin.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-016-6668-3 | DOI Listing |
J Hazard Mater
January 2025
College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China.
Understanding the distribution and drivers of microplastics (MPs) in remote and sensitive environments is essential for assessing their ecological impacts and devising mitigation strategies. This study investigates the distribution and characteristics of MPs in streams and sediments of the Mt. Everest region.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; National Laboratory for Water Sciences and Water Security, Institute of Aquatic Ecology, HUN-REN Centre for Ecological Research, Karolina út 29-31, H-1113 Budapest, Hungary; Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, H1113 Budapest, Hungary. Electronic address:
Microplastics (MPs) are an emerging environmental concern, but studies on these contaminants, particularly in river ecosystems, remain scarce. Research has indicated that MPs in the environment are predominantly microfibers (MFs); however, a few studies suggest that the MFs encountered are chiefly of natural origin. In this study, we aimed to improve the understanding of MP/MFs (both plastic and natural), among microparticle (solid particles >10 μm to <5000 μm; mainly of plastic as well as natural origin) loads in the Tiber River, Italy, by analyzing the physicochemical properties of surface water and assessing the abundance and characteristics of MPs-MFs at three sites: Ponte Grillo, Aniene, and Magliana, along a 60 km stretch.
View Article and Find Full Text PDFEnviron Monit Assess
January 2025
Faculty of Water Supply and Environmental Engineering, Arba Minch University Water Technology Institute, P.O.B 21, Arba Minch, Ethiopia.
In developing nations, the biggest threat to public health is the quality of the water. The Kulfo River provides the majority demand of the domestic water and irrigation along its course; however, it is observed that wastes from anthropogenic and natural activities enter the river. Therefore, this study aimed to examine the pollution status by integrating conventional methods with benthic macroinvertebrates.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
Metabolism-disrupting chemicals (MDCs) have attracted widespread attention due to their contributions to the prevalence of metabolic diseases worldwide. The farnesoid X receptor (FXR) is a typical lipid-sensing nuclear receptor and plays a crucial role in the development of metabolic diseases. However, few studies have examined the FXR activities of environmental samples and the corresponding MDCs.
View Article and Find Full Text PDFFront Plant Sci
January 2025
Yellow River Institute of Hydraulic Research, Henan Key Laboratory of Yellow Basin Ecological Protection and Restoration, Zhengzhou, China.
Vegetation productivity and ecosystem carbon sink capacity are significantly influenced by seasonal weather patterns. The time lags between changes in these patterns and ecosystem (including vegetation) responses is a critical aspect in vegetation-climate and ecosystem-climate interactions. These lags can vary considerably due to the spatial heterogeneity of vegetation and ecosystems.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!