We developed stochastic population genetic theory for mitochondrial and chloroplast genes, using an infinite alleles model appropriate for molecular genetic data. We considered the effects of mutation, random drift, and migration in a finite island model on selectively neutral alleles. Recurrence equations were obtained for the expectation of gene diversities within zygotes, within colonies, and between colonies. The variables are number and sizes of colonies, migration rates, sex ratios, degree of paternal transmission, number of germ line cell divisions, effective number of segregating organelle genomes, and mutation rate. Computer solutions of the recurrence equations were used to study the approach to equilibrium. Gene diversities equilibrate slowly, while GST, used to measure population subdivision, equilibrates rapidly. Approximate equilibrium equations for gene diversities and GST can be obtained by substituting Neo and me, simple functions of the numbers of breeding or migrating males and females and of the degree of paternal transmission, for the effective numbers of genes and migration rates in the corresponding equations for nuclear genes. The approximate equations are not valid when the diversity within individuals is large compared to that between individuals, as is often true for the D-loop of animal mtDNA. We used the exact equations to verify that organelle genes often show more subdivision than nuclear genes; however, we also identified the range of breeding and migrating sex ratios for which population subdivision is greater for nuclear genes. Finally, we show that gene diversities are higher for nuclei than for organelles over a larger range of sex ratios in a subdivided population than in a panmictic population.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1203645 | PMC |
http://dx.doi.org/10.1093/genetics/121.3.613 | DOI Listing |
Front Parasitol
July 2023
Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada.
Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection.
View Article and Find Full Text PDFCureus
December 2024
Community Medicine, Siksha 'O' Anusandhan Deemed to be University Institute of Medical Sciences and SUM Hospital, Bhubaneswar, IND.
Gastric cancer (GC) has become a major challenge in oncology research, primarily due to its detection at advanced stages. In this study, we identified and validated the pharmacological mechanisms involved in treating gastric cancer using an integrated approach combining network pharmacology, molecular docking, and a dynamic approach. Gastric cancer-related genes were obtained from DisGeNET, Genecard, and Malacard databases, while potential targets of bioactive compounds were predicted using SwissTargetPrediction.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China.
Background: The confused taxonomic classification of Crucigenia is mainly inferred through morphological evidence and few nuclear genes and chloroplast genomic fragments. The phylogenetic status of C. quadrata, as the type species of Crucigenia, remains considerably controversial.
View Article and Find Full Text PDFMol Imaging Biol
January 2025
Division of Nuclear Medicine and Molecular Imaging, Geneva University Hospital, CH-1211, Geneva, Switzerland.
Purpose: We aim to perform radiogenomic profiling of breast cancer tumors using dynamic contrast magnetic resonance imaging (MRI) for the estrogen receptor (ER), progesterone receptor (PR), and human epidermal growth factor receptor 2 (HER2) genes.
Methods: The dataset used in the current study consists of imaging data of 922 biopsy-confirmed invasive breast cancer patients with ER, PR, and HER2 gene mutation status. Breast MR images, including a T1-weighted pre-contrast sequence and three post-contrast sequences, were enrolled for analysis.
Nat Med
January 2025
Department of Hematology/Oncology, Cell and Gene Therapy, Scientific Institute for Research, Hospitalization and Healthcare (IRCCS), Bambino Gesù Children's Hospital, Rome, Italy.
Allogeneic chimeric antigen receptor (CAR) T cells targeting disialoganglioside-GD2 (ALLO_GD2-CART01) could be a therapeutic option for patients with relapsed or refractory, high-risk neuroblastoma (r/r HR-NB) whose tumors did not respond to autologous GD2-CART01 or who have profound lymphopenia. We present a case series of five children with HR-NB refractory to more than three different lines of therapy who received ALLO_GD2-CART01 in a hospital exemption setting. Four of them had previously received allogeneic hematopoietic stem cell transplantation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!