Autonomous self-healing structural composites with bio-inspired design.

Sci Rep

Centre for Advanced Structural Ceramics (CASC), Department of Materials, Imperial College London, UK.

Published: May 2016

Strong and tough natural composites such as bone, silk or nacre are often built from stiff blocks bound together using thin interfacial soft layers that can also provide sacrificial bonds for self-repair. Here we show that it is possible exploit this design in order to create self-healing structural composites by using thin supramolecular polymer interfaces between ceramic blocks. We have built model brick-and-mortar structures with ceramic contents above 95 vol% that exhibit strengths of the order of MPa (three orders of magnitude higher than the interfacial polymer) and fracture energies that are two orders of magnitude higher than those of the glass bricks. More importantly, these properties can be fully recovered after fracture without using external stimuli or delivering healing agents. This approach demonstrates a very promising route towards the design of strong, ideal self-healing materials able to self-repair repeatedly without degradation or external stimuli.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4857079PMC
http://dx.doi.org/10.1038/srep25059DOI Listing

Publication Analysis

Top Keywords

self-healing structural
8
structural composites
8
design strong
8
orders magnitude
8
magnitude higher
8
external stimuli
8
autonomous self-healing
4
composites bio-inspired
4
bio-inspired design
4
strong tough
4

Similar Publications

Immuno-fibrotic networks and their protein mediators, such as cytokines and chemokines, have increasingly been appreciated for their critical role in cardiac healing and fibrosis during cardiomyopathy. Immune activation, trafficking, and extravasation are tightly regulated to ensure a targeted and effective response against non-self antigens/pathogens while preserving tolerance towards self-antigens and coordinate fibrotic responses for efficient scar formation, a distinction that is severely compromised during chronic diseases. It is clear that immune cells are not only the critical regulators of post-infarct healing and scarring but are also the key players in regulating fibroblast activation during left-ventricular (LV) remodeling.

View Article and Find Full Text PDF

This current study focusses on the investigation of the self-healing abilities of metallopolymers containing different kinds of metal complexes, which were processed by direct digital light processing (DLP) based three-dimensional (3D) printing. For this purpose, 2‑phenoxyethyl acrylate is mixed with ligand-containing monomers either based on triphenylmethyl(trt)-histidine or terpyridine, respectively. Either zinc(II) or nickel(II) salts are successfully applied for a complexation of the ligand monomers in solution and, subsequently, photopolymerization is performed.

View Article and Find Full Text PDF

Recent Progress in Self-Healing Triboelectric Nanogenerators for Artificial Skins.

Biosensors (Basel)

January 2025

Henan Energy Conversion and Storage Materials Engineering Center, College of Science, Henan University of Engineering, Zhengzhou 451191, China.

Self-healing triboelectric nanogenerators (TENGs), which incorporate self-healing materials capable of recovering their structural and functional properties after damage, are transforming the field of artificial skin by effectively addressing challenges associated with mechanical damage and functional degradation. This review explores the latest advancements in self-healing TENGs, emphasizing material innovations, structural designs, and practical applications. Key materials include dynamic covalent polymers, supramolecular elastomers, and ion-conductive hydrogels, which provide rapid damage recovery, superior mechanical strength, and stable electrical performance.

View Article and Find Full Text PDF

Most of the existing hydrogel dressings have inadequacies in mechanical performance, biological activities, compatibility, or versatility, which results in the development of rapid, green, and cost-effective approaches for hydrogels in biochemical and biomedical applications becoming a top-priority task. Herein, inspired by the inherent bioactivity, water retention properties, and biocompatibility of natural polysaccharide hydrogels, we have prepared self-healing gels. Using polysaccharide (BSP), carboxymethyl chitosan (CMCS), and borax via borate ester linkages, we created hemostatic and self-healing Chinese herbal medicine hydrogels in varying concentrations (2.

View Article and Find Full Text PDF

Multilayered organosiloxane films with self-healing ability converted from block copolymer nanocomposites.

Chem Commun (Camb)

January 2025

Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.

Self-healable, multilayered organosiloxane films were prepared thermal conversion of lamellar organosiloxane films containing poly(ethylene oxide)-polydimethylsiloxane-poly(ethylene oxide) block copolymers. The incorporation of silanolate groups enabled crack healing through dynamic siloxane equilibration. The enhanced hardness and suppressed cyclic siloxane formation resulting from the multilayered structure exhibit potential for practical applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!