Objectives: To use molecular docking and dynamic simulation to investigate the inhibitory action of chlorogenic acid (CHA) and its analogues against sortase A of Staphylococcus aureus.

Results: Five novel, natural inhibitors with different activities were discovered for sortase A (SrtA). The inhibition mechanism of the novel inhibitors was consistent with the mechanism of CHA, which was reported previously by Wang et al. (Front Microbiol 6:1031, 2015). Based on structure-activity relationship analysis, the hydroxyl moiety (C1) of the inhibitors is critical in the catalytic region of SrtA, which could be confirmed by the calculation of the binding free energy between SrtA and the inhibitors.

Conclusions: The mechanism obtained by molecular dynamics simulation is thus useful for the development of novel, selective SrtA inhibitors.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10529-016-2112-5DOI Listing

Publication Analysis

Top Keywords

chlorogenic acid
8
sortase staphylococcus
8
molecular docking
8
docking dynamic
8
dynamic simulation
8
inhibitors
5
acid analogues
4
analogues inhibitors
4
inhibitors investigation
4
investigation inhibition
4

Similar Publications

Lycium barbarum polysaccharide (LBP) is a prebiotic that promotes the proliferation of beneficial bacteria, but lacks of regulatory function on harmful bacteria. In this study, chlorogenic acid (CGA) was used to achieve the functional enhancement of two LBPs (LBP-A and LBP-M). The combination of CGA resulted in changes in the solution properties of LBPs, manifested as increased pseudoplasticity, viscosity, turbidity, and decreased water mobility, absolute potential value, pH value.

View Article and Find Full Text PDF

Probiotics fermentation enhanced the bioactive properties of water extract and improved regulation ability of gut microbiota.

Food Chem X

January 2025

Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, School of Basic Medical Science, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 550025, PR China.

This study investigated the probiotic potential of fermented beverages derived from (). Three different beverages were prepared by fermenting water extract with A6-3 ( A6-3), A27-1 ( A27-1), or both for 48 h. The results demonstrated that bioactive compounds from promoted the growth of these two probiotics and preserved their viability for at least 28 days at 4 °C.

View Article and Find Full Text PDF

Developing cost-effective and efficient analytical methods is essential for detecting chlorogenic acid (CGA), as excessive consumption of CGA, despite its significant antioxidant, anticancer, and anti-inflammatory properties, can cause serious health problems. The remarkable progress and adjustable features of nanomaterials have significantly improved the analytical capabilities of electrochemical sensors for CGA. This review examines the use of optimally engineered nanomaterials in CGA electrochemical sensors, emphasizing the design and modification strategies of various nanomaterials.

View Article and Find Full Text PDF

In 2019, diabetes mellitus affected 9.3% of the global population and accounted for one in nine adult deaths. Plant-based antioxidants neutralize harmful free radicals, mitigate oxidative stress, and significantly prevent diabetes and its complications.

View Article and Find Full Text PDF

The genus , belonging to the Rosaceae family, exhibits widespread distribution across Iran, comprising 17 species. Hawthorn has garnered significant attention in recent years as a prominent herbal remedy in phytotherapy and culinary applications. Various plant parts, including flowers, leaves, and fruits, have been traditionally employed to address cardiovascular conditions such as hypertension, hypotension, palpitations, and cardiac arrhythmias.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!