Trustworthy preparation and contacting of micron-sized batteries is an essential task to enable reliable in situ TEM studies during electrochemical biasing. Some of the challenges and solutions for the preparation of all-solid-state batteries for in situ TEM electrochemical studies are discussed using an optimized focused ion beam (FIB) approach. In particular redeposition, resistivity, porosity of the electrodes/electrolyte and leakage current are addressed. Overcoming these challenges, an all-solid-state fluoride ion battery has been prepared as a model system for in situ TEM electrochemical biasing studies and first results on a Bi/La0.9 Ba0.1 F2.9 half-cell are presented. Microsc. Res. Tech. 79:615-624, 2016. © 2016 Wiley Periodicals, Inc.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.22675DOI Listing

Publication Analysis

Top Keywords

situ tem
16
tem studies
8
all-solid-state fluoride
8
fluoride ion
8
electrochemical biasing
8
tem electrochemical
8
situ
4
studies
4
studies micron-sized
4
micron-sized all-solid-state
4

Similar Publications

Facet-Dependent Cold Welding of Au Nanorods Revealed by Liquid Cell Transmission Electron Microscopy.

Adv Sci (Weinh)

January 2025

SEU-FEI Nano-Pico Center, Key Lab of MEMS of Ministry of Education, Southeast University, Nanjing, 210096, China.

Cold welding of metals at the nanoscale has been demonstrated to play a significant role in bottom-up manufacturing and self-healing processes of nanostructures and nanodevices. However, the welding mechanism at the nanoscale is not well understood. In this study, a comprehensive demonstration of the cold welding process of gold nanorods with different modes is presented through in situ liquid cell transmission electron microscopy.

View Article and Find Full Text PDF

Subnanometer Tracking of the Oxidation State on CoO Nanoparticles by Identical Location Imaging and Spectroscopy.

ACS Appl Mater Interfaces

January 2025

Department of Inorganic Chemistry, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin 14195, Germany.

Understanding a catalytic reaction requires tools that elucidate the structure of the catalyst surface and subsurface, ideally at atomic resolution and under reaction conditions. Operando electron microscopy meets this requirement in some cases, but fails in others where the required reaction conditions cannot be reached or lead to an unwanted influence of the electron beam on the reactant and catalyst. We introduce ILIAS (identical location imaging and spectroscopy) in combination with a quasi in situ approach to disentangle the effect of heat and gas on the surface of nanoparticles from the effect of the electron beam.

View Article and Find Full Text PDF

This study, we synthesized a graphene oxide@BiBTC MOF (GO@BiBTC) photocatalyst using a hydrothermal method. The resulting samples were comprehensively characterized using FT-IR, Raman spectra, XRD, SEM, TEM, XPS and UV-Vis spectroscopy. The photodegradation reaction fits the pseudo-first-order kinetics and the deterioration rate constants () value of BiBTC, GO@BiBTC MOF composites were 0.

View Article and Find Full Text PDF

Ce1-xMnxVO4 with Improved Activity for Low-Temperature Catalytic Reduction of NO with NH3.

Chem Asian J

January 2025

Fudan University, Department of Environmental Science and Engineering, Shanghai Handan Road 220, 200433, Shanghai, CHINA.

Novel Ce1-xMnxVO4 catalysts prepared via modified hydrothermal synthesis were used in selective catalytic reduction of NO using NH3 (NH3-SCR). The Ce1-xMnxVO4 catalysts displayed optimum NO removal efficiency at 250 oC. Physicochemical properties including crystal type, morphology, particle size, elemental composition, BET surface area, chemical bond, and valence state were studied by XRD, TEM, EDS, N2 adsorption-desorption, Raman spectroscopy, and XPS.

View Article and Find Full Text PDF

MicroRNA-502-3p (MiR-502-3p), a synapse enriched miRNA is considerably implicated in Alzheimer's disease (AD). Our previous study found the high expression level of miR-502-3p in AD synapses relative to controls. Further, miR-502-3p was found to modulate the GABAergic synapse function via modulating the GABA A receptor subunit α-1 (GABRA1) protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!