Paired associative stimulation (PAS) is a widely used transcranial magnetic stimulation (TMS) paradigm to non-invasively induce synaptic plasticity in the human brain in vivo. Altered PAS-induced plasticity has been demonstrated for several diseases. However, researchers are faced with a high inter- and intra-subject variability of the PAS response. Here, we pooled original data from nine PAS studies from three centers and analyzed the combined dataset of 190 healthy subjects with regard to age dependency, the role of stimulation parameters and the effect of different statistical methods. We observed no main effect of the PAS intervention over all studies (F(2;362) = 0.44; p = 0.644). The rate of subjects showing the expected increase of motor evoked potential (MEP) amplitudes was 53%. The PAS effect differed significantly between studies as shown by a significant interaction effect (F(16;362) = 1.77; p = 0.034) but post-hoc testing did not reveal significant effects after correction for multiple tests. There was a trend toward increased variability of the PAS effect in older subjects. Acquisition parameters differed across studies but without systematically influencing changes in MEP-size. The use of post/baseline quotients systematically indicated stronger PAS effects than post/baseline difference or the logarithm of the post/baseline quotient. The non-significant PAS effects across studies and a wide range of responder rates between studies indicate a high variability of this method. We were thus not able to replicate findings from a previous meta-analysis showing robust effects of PAS. No pattern emerged regarding acquisition parameters that at this point could guide future studies to reduce variability and help increase response rate. For future studies, we propose to report the responder rate and recommend the use of the logarithmized post/baseline quotient for further analyses to better address the possibility that results are driven by few extreme cases.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4856316PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0154880PLOS

Publication Analysis

Top Keywords

pas
9
paired associative
8
associative stimulation
8
variability pas
8
studies
8
differed studies
8
acquisition parameters
8
pas effects
8
post/baseline quotient
8
future studies
8

Similar Publications

Sivelestat sodium protects against renal ischemia/reperfusion injury by reduction of NETs formation.

Arch Biochem Biophys

January 2025

Department of Critical Care Medicine, the First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province 150001, China; Heilongjiang Provincial Key Laboratory of Critical Care Medicine, Harbin 150001, China; Central Laboratory of The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang Province, China. Electronic address:

Background: Ischemia-reperfusion injury (IRI) often results in renal impairment. While the presence of neutrophil extracellular traps (NETs) is consistently observed, their specific impact on IRI is not yet defined. Sivelestat sodium, an inhibitor of neutrophil elastase which is crucial for NET formation, may offer a therapeutic approach to renal IRI, warranting further research.

View Article and Find Full Text PDF

Label-free quantitative imaging of conjunctival goblet cells.

Ocul Surf

January 2025

Division of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673; Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-Ro, Nam-gu, Pohang, Gyeongbuk, Republic of Korea, 37673. Electronic address:

Purpose: To introduce and validate quantitative oblique back-illumination microscopy (qOBM) as a label-free, high-contrast imaging technique for visualizing conjunctival goblet cells (GCs) and assessing their functional changes.

Methods: qOBM was developed in conjunction with moxifloxacin-based fluorescence microscopy (MBFM), which was used for validating GC imaging. Initial validation was conducted with polystyrene beads, followed by testing on normal mouse conjunctiva under both ex-vivo and in-vivo conditions.

View Article and Find Full Text PDF

Specific Rosetta-based protein-peptide prediction protocol allows the design of novel cholinesterase inhibitor peptides.

Bioorg Chem

January 2025

Laboratorio de Peptidos Bioactivos, Department of Organic Chemistry, Faculty of Biochemistry and Biological Sciences, National University of the Littoral, Ciudad Universitaria UNL, 3000 Santa Fe, Argentina; National Scientific and Technical Research Council (CONICET), Ministry of Science, Technology and Innovation, Godoy Cruz 2290, Ciudad de Buenos Aires, Argentina. Electronic address:

The search for novel cholinesterase inhibitors is essential for advancing treatments for neurodegenerative disorders such as Alzheimer's disease (AD). In this study, we employed the Rosetta pepspec module, originally developed for designing peptides targeting protein-protein interactions, to design de novo peptides targeting the peripheral aromatic site (PAS) of acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). A total of nine peptides were designed for human AChE (hAChE), T.

View Article and Find Full Text PDF

Bacteriophage infections in bacterial cultures pose a significant challenge to industrial bioprocesses, necessitating the development of innovative antiphage solutions. This study explores the antiphage potential of indigo carmine (IC), a common FDA-approved food additive. IC demonstrated selective inactivation of DNA phages (P001, T4, T1, T7, λ) with the EC values ranging from 0.

View Article and Find Full Text PDF

Placenta accreta spectrum (PAS) poses a significant risk for maternal morbidity and mortality. There is a global rise in incidence of PAS in tandem with an increase in rates of cesarian section. Previous cesarian section and presence of placenta previa are two independent risk factors for development of PAS.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!