In vivo antimalarial activity of extracts of Tanzanian medicinal plants used for the treatment of malaria.

J Adv Pharm Technol Res

Department of Biological and Pre-Clinical Studies, Institute of Traditional Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania.

Published: May 2016

Plants used in traditional medicine have been the source of a number of currently used antimalarial medicines and continue to be a promising resource for the discovery of new classes of antimalarial compounds. The aim of this study was to evaluate in vivo antimalarial activity of four plants; Erythrina schliebenii Harms, Holarrhena pubescens Buch-Ham, Phyllanthus nummulariifolius Poir, and Caesalpinia bonducella (L.) Flem used for treatment of malaria in Tanzania. In vivo antimalarial activity was assessed using the 4-day suppressive antimalarial assay. Mice were infected by injection via tail vein with 2 × 10(7) erythrocytes infected with Plasmodium berghei ANKA. Extracts were administered orally, once daily, for a total of four daily doses from the day of infection. Chloroquine (10 mg/kg/day) and solvent (5 mL/kg/day) were used as positive and negative controls, respectively. The extracts of C. bonducella, E. schliebenii, H. pubescens, and P. nummulariifolius exhibited dose-dependent suppression of parasite growth in vivo in mice, with the highest suppression being by C. bonducella extract. While each of the plant extracts has potential to yield useful antimalarial compounds, the dichloromethane root extract of C. bonducella seems to be the most promising for isolation of active antimalarial compound(s). In vivo antimalarial activity presented in this study supports traditional uses of C. bonducella roots, E. schliebenii stem barks, H. pubescens roots, and P. nummulariifolius for treatment of malaria.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850770PMC
http://dx.doi.org/10.4103/2231-4040.179748DOI Listing

Publication Analysis

Top Keywords

vivo antimalarial
16
antimalarial activity
16
treatment malaria
12
antimalarial compounds
12
antimalarial
8
vivo
5
bonducella
5
activity
4
extracts
4
activity extracts
4

Similar Publications

Background: The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects.

View Article and Find Full Text PDF

TKK130 is a 3-Hydroxy-Propanamidine (HPA) with Potent Antimalarial Activity and a High Barrier to Resistance.

J Med Chem

December 2024

Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute of Pharmaceutical and Medicinal Chemistry, Universitätsstr. 1, 40225 Düsseldorf, Germany.

Malaria continues to pose a significant burden on populations in endemic areas and requires innovative treatment options. Here, we report the synthesis and preclinical evaluation of the novel 3-hydroxypropanamidine (HPA) , which shows excellent antiplasmodial activity against drug-sensitive and -resistant strains. Moreover, in various human cell lines, the compound shows no cytotoxicity and excellent parasite selectivity.

View Article and Find Full Text PDF

Inhibitory Effect of PRMT5/MTA Inhibitor on MTAP-Deficient Glioma May Be Influenced by Surrounding Normal Cells.

Cancer Med

December 2024

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai, Shandong, People's Republic of China.

Background: Methylthioadenosine phosphorylase (MTAP) and protein arginine methyltransferase 5 (PRMT5) are considered to be a synthetic lethal pair of targets, due to the fact that deletion of MTAP leads to massive production of methylthioadenosine (MTA) decreasing the activity of PRMT5. In vitro and in vivo experiments have demonstrated that MRTX1719, a small molecule that selectively binds PRMT5/MTA complex, significantly inhibits the proliferation of MTAP-deficient tumors and has a weak toxic effect on normal cells. However, it has been reported that MTAP-deleted tumors did not significantly accumulate MTA in vivo due to metabolism of MTA by MTAP-expressing stroma, which might lead to a diminished anti-cancer effect of MRTX1719.

View Article and Find Full Text PDF

This study focused on the synthesis, structural validation, and evaluation of the antiplasmodial efficacy of brachangobinan A (BA) and its enantiomers, (+)-BA and (-)-BA, as potential antimalarial agents. BA, (+)-BA, and (-)-BA were synthesized through chemical processes and validated via advanced spectroscopic techniques. In vitro studies were conducted to assess their efficacy against Plasmodium falciparum strains 3D7 and K1 by determining their half maximal inhibitory concentration (IC) values, cytotoxicity profiles, and selectivity indices.

View Article and Find Full Text PDF

Hydroxychloroquine (HCQ), a well-known antimalarial and anti-inflammatory drug, has demonstrated potential neuroprotective effects in ischemic stroke by inhibiting pyroptosis, a programmed cell death associated with inflammation. This study investigates the impact of HCQ on ischemic stroke pathology using both in vivo and in vitro models. In vivo, C57BL/6 mice subjected to middle cerebral artery occlusion (MCAO) were treated with HCQ.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!