Aim: β-asarone, an active component of Acori graminei rhizome, has been reported to have neuroprotective effects in Alzheimer's disease. As the underlying mechanism is not known, we investigated the neuroprotective effects of β-asarone in an APP/PS1 double transgenic mouse model and in NG108 cells.

Materials And Methods: APPswe/PS1dE9 double transgenic male mice were randomly assigned to a model group, β-asarone treatment groups (21.2, 42.4, or 84.8 mg/kg/d), or donepezil treatment group (2 mg/kg/d). Donepezil treatment was a positive control, and background- and age-matched wild-type B6 mice were an external control group. β-asarone (95.6% purity) was dissolved in 0.8% Tween 80 and administered by gavage once daily for 2.5 months. Control and model animals received an equal volume of vehicle. After 2.5 months of treatment, behavior of all animals was evaluated in a Morris water maze. Expression of synaptophysin (SYP) and glutamatergic receptor 1 (G1uR1) in the hippocampus and cortex of the double transgenic mice was assayed by Western blotting. The antagonistic effects of β-asarone against amyloid-β peptide (Aβ) were investigated in vitro in the NG108-15 cell line. After 24 hours of incubation, cells were treated with 10 μm Aβ with or without β-asarone at different concentrations (6.25, 12.5, or 25 μM) for an additional 36 hours. The cytotoxicity of β-asarone was evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay of cell viability, and cell morphology was evaluated by bright-field microscopy after 24 hours of treatment. The expression of SYP and GluR1 in cells was detected by Western blot assay in the hippocampus and brain cortex tissues of mice.

Results: β-asarone at a high dose reduced escape latency and upregulated SYP and GluR1 expression at both medium and high doses. Cell morphology evaluation showed that β-asarone treatment did not result in obvious cell surface spots and cytoplasmic granularity. β-asarone had a dose-dependent effect on cell proliferation.

Conclusion: β-asarone antagonized the Aβ neurotoxicity in vivo, improved the learning and memory ability of APP/PS1 mice, and increased the expression of SYP and GluR1 both in vivo and in vitro. Thus, β-asarone may be a potential drug for the treatment of Alzheimer's disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4841421PMC
http://dx.doi.org/10.2147/DDDT.S93559DOI Listing

Publication Analysis

Top Keywords

syp glur1
16
alzheimer's disease
12
expression syp
12
β-asarone
12
double transgenic
12
increased expression
8
neuroprotective effects
8
effects β-asarone
8
group β-asarone
8
β-asarone treatment
8

Similar Publications

Objective: A large body of evidence has suggested that the disruptions of neural plasticity in the brain play a pivotal role in major depressive disorder (MDD). Electroacupuncture (EA) therapy has been shown to be an effective treatment modality for MDD. However, the mechanism underling the antidepressive effect of EA treatment has not been clearly elucidated.

View Article and Find Full Text PDF

Objectives: Functional electrical stimulation (FES) may induce involuntary exercise and make beneficial effects on vascular dementia (VD) by strengthening the BDNF-pCREB-mediated pathway and hippocampal plasticity. Whether FES improves recognition memory and synaptic plasticity in the prefrontal cortex (PFC) was investigated by establishing a VD model.

Methods: The VD rats were administered with two weeks of voluntary exercise, forced exercise, or involuntary exercise induced with FES.

View Article and Find Full Text PDF

Converging evidence indicates that abnormal glutamatergic and synaptic systems may be associated with the pathophysiology of depression. Over-activation of corticotropin-releasing hormone (CRH) neurons in the hypothalamic paraventricular nucleus (PVN) plays a key role in the hypothalamic-pituitary-adrenal (HPA) axis hyperactivity and is a prominent feature in depression. In this study, we examined the effect of chronic unpredictable stress (CUS) in rats on the expression of AMPA subunit GluR1 protein in the hypothalamic PVN as well as on the expression of GluR1 and several synapse-related proteins in the hypothalamus.

View Article and Find Full Text PDF

Chronic stress is a precipitating factor for disorders including depression. The basolateral amygdala (BLA) is a critical substrate that interconnects with stress-modulated neural networks to generate emotion- and mood-related behaviors. The current study shows that 3 h per day of restraint stress for 14 days caused mice to exhibit long-term depressive behaviors, manifested by disrupted sociality and despair levels, which were rescued by fluoxetine.

View Article and Find Full Text PDF

Aim: β-asarone, an active component of Acori graminei rhizome, has been reported to have neuroprotective effects in Alzheimer's disease. As the underlying mechanism is not known, we investigated the neuroprotective effects of β-asarone in an APP/PS1 double transgenic mouse model and in NG108 cells.

Materials And Methods: APPswe/PS1dE9 double transgenic male mice were randomly assigned to a model group, β-asarone treatment groups (21.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!