Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4850772 | PMC |
http://dx.doi.org/10.4103/0257-7941.179871 | DOI Listing |
Commun Eng
January 2025
THz-Photonics Group, Technische Universität Braunschweig, Braunschweig, Germany.
New applications such as the Internet of Things, autonomous driving, Industry X.0 and many more will transmit sensitive information via fibers and over the air with envisioned data rates beyond terabits per second. Therefore, the encryption has to be simple, fast and spectrally efficient, so that the power consumption and latency are low and the scarce bandwidth is not wasted.
View Article and Find Full Text PDFACS Nano
January 2025
John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States.
Silicon carbide (SiC) is a semiconductor used in quantum information processing, microelectromechanical systems, photonics, power electronics, and harsh environment sensors. However, its high-temperature stability, high breakdown voltage, wide bandgap, and high mechanical strength are accompanied by a chemical inertness, which makes complex micromachining difficult. Photoelectrochemical (PEC) etching is a simple, rapid means of wet processing SiC, including the use of dopant-selective etch stops that take advantage of the mature SiC homoepitaxy.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Karlsruhe Institute of Technology, IQMT, 76131 Karlsruhe, Germany.
Josephson junction parametric amplifiers have become essential tools for microwave quantum circuit readout with minimal added noise. Even after improving at an impressive rate in the past decade, they remain vulnerable to magnetic fields, which limits their use in many applications such as spin qubits, Andreev and molecular magnet devices, dark matter searches, etc. Kinetic inductance materials, such as granular aluminum (grAl), offer an alternative source of nonlinearity with innate magnetic field resilience.
View Article and Find Full Text PDFPhys Rev Lett
December 2024
Duke University, Department of Physics, Durham, North Carolina 27708, USA.
The emergence of a quantum spin liquid (QSL), a state of matter that can result when electron spins are highly correlated but do not become ordered, has been the subject of a considerable body of research in condensed matter physics [1,2]. Spin liquid states have been proposed as hosts for high-temperature superconductivity [3] and can host topological properties with potential applications in quantum information science [4]. The excitations of most quantum spin liquids are not conventional spin waves but rather quasiparticles known as spinons, whose existence is well established experimentally only in one-dimensional systems; the unambiguous experimental realization of QSL behavior in higher dimensions remains challenging.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics and Astronomy & Wright Center for Photovoltaic Innovation and Commercialization, The University of Toledo, Toledo, Ohio 43606, United States.
Wide band gap FACsPb(IBr) perovskite photovoltaic (PV) devices are measured by spectroscopic ellipsometry in the through-the-glass configuration and analyzed to determine the complex optical property spectra of the perovskite absorber as well as the structural properties of all constituent layers. This information is used to simulate external quantum efficiency (EQE) spectra, to calculate PV device performance parameters such as short circuit current density, open circuit voltage, fill factor, and power conversion efficiency, and to develop strategies for increasing the accuracy of predictions. Simulations and calculations tend to overestimate PV device performance parameters, undermining the accuracy and usefulness of those simulations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!