Heterometallic Ce(IV)/M (M = Mo(VI), Re(VII), V(V)) oxo clusters supported by the Kläui tripodal oxygen ligand [(η(5)-C5H5)Co{P(O)(OEt)2}3](-) (LOEt(-)) have been synthesized and structurally characterized, and the catalytic activity of the Ce(IV)/V(V) oxo cluster in the oxidation of thioanisoles has been studied. Treatment of [Ce(LOEt)Cl3] (1) with [Ag2MoO4] afforded the reported Ce(IV)/Mo(VI) cluster [H4(CeLOEt)6Mo9O38] (2), whereas that with [AgReO4] yielded the Ce(IV)/Re(VII) cluster [{LOEtCe(ReO4)2(H2O)(μ-ReO4)}2] (3) that contains an 8-membered Ce2Re2O4 ring. Treatment of 1 with [Ag3VO4] afforded the Ce(IV)/V(V) cluster [H2(CeLOEt)4(V[double bond, length as m-dash]O)4(μ4-O)(μ3-O)12] (4) containing a {Ce4V4O13} oxo-metallic core. The solid-state structure of 4 consists of four {VO4}(3-) units bridged by four {LOEtCe(3+)} moieties and a μ4-oxo ligand. Each Ce atom in 4 is 9-coordinated, whereas the geometry around each V atom is pseudo square pyramidal with a terminal oxo at the apical position. Cluster 4 is an active catalyst for the oxidation of substituted thioanisoles with tert-butyl hydroperoxide. For example, the oxidation of thioanisole with tert-butyl hydroperoxide in the presence of 0.01 mol% of 4 gave a ca. 30 : 1 mixture of the sulfoxide and sulfone products in 96% yield.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6dt00678g | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!