This paper examines the effects of four different polar headgroups on small-ion membrane permeability from liposomes comprised of Archaea-inspired glycerolmonoalkyl glycerol tetraether (GMGT) lipids. We found that the membrane-leakage rate across GMGT lipid membranes varied by a factor of ≤1.6 as a function of headgroup structure. However, the leakage rates of small ions across membranes comprised of commercial bilayer-forming 1-palmitoyl-2-oleoyl-sn-glycerol (PO) lipids varied by as much as 32-fold within the same series of headgroups. These results demonstrate that membrane leakage from GMGT lipids is less influenced by headgroup structure, making it possible to tailor the structure of the polar headgroups on GMGT lipids while retaining predictable leakage properties of membranes comprised of these tethered lipids.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/chem.201601326 | DOI Listing |
Nat Commun
June 2024
Department of Ocean Science and Engineering, Southern University of Science and Technology, Shenzhen, China.
Archaea possess characteristic membrane-spanning lipids that are thought to contribute to the adaptation to extreme environments. However, the biosynthesis of these lipids is poorly understood. Here, we identify a radical S-adenosyl-L-methionine (SAM) enzyme that synthesizes glycerol monoalkyl glycerol tetraethers (GMGTs).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
June 2024
Department of Earth System Science, Stanford University, Stanford, CA 94305.
Archaea produce unique membrane-spanning lipids (MSLs), termed glycerol dialkyl glycerol tetraethers (GDGTs), which aid in adaptive responses to various environmental challenges. GDGTs can be modified through cyclization, cross-linking, methylation, hydroxylation, and desaturation, resulting in structurally distinct GDGT lipids. Here, we report the identification of radical SAM proteins responsible for two of these modifications-a glycerol monoalkyl glycerol tetraether (GMGT) synthase (Gms), responsible for covalently cross-linking the two hydrocarbon tails of a GDGT to produce GMGTs, and a GMGT methylase (Gmm), capable of methylating the core hydrocarbon tail.
View Article and Find Full Text PDFEnviron Microbiol
April 2022
Univ Lyon, INSA Lyon, CNRS, UMR 5240, Villeurbanne, F-69621, France.
Microbes preserve membrane functionality under fluctuating environmental conditions by modulating their membrane lipid composition. Although several studies have documented membrane adaptations in Archaea, the influence of most biotic and abiotic factors on archaeal lipid compositions remains underexplored. Here, we studied the influence of temperature, pH, salinity, the presence/absence of elemental sulfur, the carbon source and the genetic background on the lipid core composition of the hyperthermophilic neutrophilic marine archaeon Pyrococcus furiosus.
View Article and Find Full Text PDFSci Rep
December 2019
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, 92093-0358, USA.
A major challenge in liposomal research is to minimize the leakage of encapsulated cargo from either uncontrolled passive permeability across the liposomal membrane or upon fusion with other membranes. We previously showed that liposomes made from pure Archaea-inspired bipolar tetraether lipids exhibit exceptionally low permeability of encapsulated small molecules due to their capability to form more tightly packed membranes compared to typical monopolar lipids. Here, we demonstrate that liposomes made of synthetic bipolar tetraether lipids can also undergo membrane fusion, which is commonly accompanied by content leakage of liposomes when using typical bilayer-forming lipids.
View Article and Find Full Text PDFChemistry
June 2016
Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, CA, 92093-0358, USA.
This paper examines the effects of four different polar headgroups on small-ion membrane permeability from liposomes comprised of Archaea-inspired glycerolmonoalkyl glycerol tetraether (GMGT) lipids. We found that the membrane-leakage rate across GMGT lipid membranes varied by a factor of ≤1.6 as a function of headgroup structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!