Spatial Cross-Talk between Oxidative Stress and DNA Replication in Human Fibroblasts.

J Proteome Res

Division of Medicine, University College London, Center for Nephrology, Royal Free Campus, Rowland Hill Street, London NW3 2PF, United Kingdom.

Published: June 2016

MS-based proteomics has been applied to a differential network analysis of the nuclear-cytoplasmic subcellular distribution of proteins between cell-cycle arrest: (a) at the origin activation checkpoint for DNA replication, or (b) in response to oxidative stress. Significant changes were identified for 401 proteins. Cellular response combines changes in trafficking and in total abundance to vary the local compartmental abundances that are the basis of cellular response. Appreciable changes for both perturbations were observed for 245 proteins, but cross-talk between oxidative stress and DNA replication is dominated by 49 proteins that show strong changes for both. Many nuclear processes are influenced by a spatial switch involving the proteins {KPNA2, KPNB1, PCNA, PTMA, SET} and heme/iron proteins HMOX1 and FTH1. Dynamic spatial distribution data are presented for proteins involved in caveolae, extracellular matrix remodelling, TGFβ signaling, IGF pathways, emerin complexes, mitochondrial protein import complexes, spliceosomes, proteasomes, and so on. The data indicate that for spatially heterogeneous cells cross-compartmental communication is integral to their system biology, that coordinated spatial redistribution for crucial protein networks underlies many functional changes, and that information on dynamic spatial redistribution of proteins is essential to obtain comprehensive pictures of cellular function. We describe how spatial data of the type presented here can provide priorities for further investigation of crucial features of high-level spatial coordination across cells. We suggest that the present data are related to increasing indications that much of subcellular protein transport is constitutive and that perturbation of these constitutive transport processes may be related to cancer and other diseases. A quantitative, spatially resolved nucleus-cytoplasm interaction network is provided for further investigations.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jproteome.6b00101DOI Listing

Publication Analysis

Top Keywords

oxidative stress
12
dna replication
12
cross-talk oxidative
8
stress dna
8
proteins
8
cellular response
8
dynamic spatial
8
spatial redistribution
8
spatial
7
changes
5

Similar Publications

Enhancing Miscanthus floridulus remediation of soil cadmium using Beauveria bassiana FE14: Plant growth promotion and microbial interactions.

Ecotoxicol Environ Saf

January 2025

College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; Yuelushan Laboratory, Changsha 410125, China. Electronic address:

Soil heavy metal pollution presents substantial risks to food security and human health. This study focused on the efficiency of plant growth-promoting fungus-Beauveria bassiana FE14 and Miscanthus floridulus on the synergistic remediation of soil Cd contamination. Results revealed that B.

View Article and Find Full Text PDF

Inducers of Autophagy and Cell Death: Focus on Copper Metabolism.

Ecotoxicol Environ Saf

January 2025

State Key Laboratory of Swine and Poultry Breeding Industry, Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, College of Animal Science and Technology, Sichuan Agricultural University, Chendu 611130, PR China. Electronic address:

Copper is an essential trace element in biological systems, playing a key role in various physiological functions, including redox reactions and energy metabolism. However, an imbalance in copper homeostasis can induce oxidative stress, mitochondrial dysfunction, and inhibition of the ubiquitin-proteasome system, ultimately leading to significant cytotoxicity and cell death. According to recent research, copper can bind to lipoylation sites on proteins involved in the tricarboxylic acid cycle, causing aggregation of lipoylated proteins, the loss of Fe-S cluster proteins, proteotoxic stress, and ultimately, cell death.

View Article and Find Full Text PDF

This study aimed to investigate the potential protective properties of a traditional Chinese medicine (TCM) herbal product, Siraitia grosvenorii granules (SGG) against PM2.5-induced lung injury, as well as their active constituents and underlying mechanisms. The chemical composition of SGG, such as wogonin (MOL000173), luteolin (MOL000006), nobiletin (MOL005828), naringenin (MOL004328), acacetin (MOL001689), were identified via ultra-high-performance liquid chromatography-Q Exactive (UHPLC-QE) Orbitrap/MS.

View Article and Find Full Text PDF

Objective: The oxidative balance score (OBS) has emerged as a novel marker for assessing oxidative stress status. This study aimed to investigate the association of OBS with systolic blood pressure (SBP), diastolic blood pressure (DBP), all-cause, and cardiovascular disease mortality in hypertensive patients.

Methods: We conducted an analysis of data from 7602 hypertensive patients from the National Health and Nutrition Examination Survey (NHANES) 2005-2018.

View Article and Find Full Text PDF

Youthful Stem Cell Microenvironments: Rejuvenating Aged Bone Repair Through Mitochondrial Homeostasis Remodeling.

Adv Sci (Weinh)

January 2025

Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Orthopedic Institute, MOE Key Laboratory of Geriatric Diseases and Immunology, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, 215000, China.

Extracellular matrix (ECM) derived from mesenchymal stem cells regulates antioxidant properties and bone metabolism by providing a favorable extracellular microenvironment. However, its functional role and molecular mechanism in mitochondrial function regulation and aged bone regeneration remain insufficiently elucidated. This proteomic analysis has revealed a greater abundance of proteins supporting mitochondrial function in the young ECM (Y-ECM) secreted by young bone marrow-derived mesenchymal stem cells (BMMSCs) compared to the aged ECM (A-ECM).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!