Herein, we have explored the interaction between amitriptyline hydrochloride (AMT) and hemoglobin (Hb), using steady-state and time-resolved fluorescence spectroscopy, UV-visible spectroscopy, and circular dichroism spectroscopy, in combination with molecular docking and molecular dynamic (MD) simulation methods. The steady-state fluorescence reveals the static quenching mechanism in the interaction system, which was further confirmed by UV-visible and time-resolved fluorescence spectroscopy. The binding constant, number of binding sites, and thermodynamic parameters viz. ΔG, ΔH, ΔS are also considered; result confirms that the binding of the AMT with Hb is a spontaneous process, involving hydrogen bonding and van der Waals interactions with a single binding site, as also confirmed by molecular docking study. Synchronous fluorescence, CD data, and MD simulation results contribute toward understanding the effect of AMT on Hb to interpret the conformational change in Hb upon binding in aqueous solution.

Download full-text PDF

Source
http://dx.doi.org/10.1080/07391102.2016.1184184DOI Listing

Publication Analysis

Top Keywords

interaction amitriptyline
8
amitriptyline hydrochloride
8
time-resolved fluorescence
8
fluorescence spectroscopy
8
molecular docking
8
binding
5
hydrogen bonding-assisted
4
bonding-assisted interaction
4
hydrochloride hemoglobin
4
hemoglobin spectroscopic
4

Similar Publications

Objectives: This study is to assess how 22 kHz and 50 kHz spontaneous ultrasound vocalization (USV) calls would be affected by different origins of pain so as to validate the use of USV in pain studies.

Methods: Five well-established rat models of pain were used to evaluate various parameters of spontaneous 22 kHz and 50 kHz calls in adult male rats in terms of both acute and chronic or inflammatory and neuropathic or somatic and visceral origins. The effects of local lidocaine blockade of the injection site and intraperitoneal administration of antidepressant (amitriptyline) and anticonvulsant (gabapentin) were examined as well in typical inflammatory and neuropathic pain models, respectively.

View Article and Find Full Text PDF

The combination of the tricyclic antidepressant amitriptyline hydrochloride (AMH) and the non-selective beta-adrenergic blocker propranolol hydrochloride (PPH) is used for migraine prophylaxis. Higher doses of AMH trigger cardiac arrhythmias, anxiety, tachycardia, convulsions, hyperglycemia and anticholinergic side effects. The combined dosage formulation of AMH and PPH leads to drug-drug interactions; causes sedation, xerostomia, dysuria, insomnia and bradycardia; and results in patient non-compliance.

View Article and Find Full Text PDF

Introduction: Tricyclic antidepressants (TCAs) were once commonly used to treat major depressive disorder (MDD), but are now considered second-line options after SSRIs and SNRIs. Additionally, TCAs are used to treat other conditions such as chronic pain and enuresis in children. Due to their numerous side effects and potential for drug interactions, cases of poisoning and death from TCA overdose, particularly amitriptyline, are on the rise.

View Article and Find Full Text PDF

The Antidepressant Drug Amitriptyline Affects Human SH-SY5Y Neuroblastoma Cell Proliferation and Modulates Autophagy.

Int J Mol Sci

September 2024

Preclinical and Translational Pharmacology, Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy.

Amitriptyline is a tricyclic antidepressant commonly used for depressive disorders and is prescribed off-label for several neurological conditions like neuropathic pain, migraines and anxiety. Besides their action on the reuptake of monoaminergic neurotransmitters, tricyclic antidepressants interact with several additional targets that may contribute to either therapeutic or adverse effects. Here, we investigated the effects of amitriptyline on proliferation and autophagy (i.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how different P450 enzymes interact and affect drug metabolism changes due to alcohol by analyzing samples from 23 human liver donors with known alcohol consumption histories.
  • Findings show a strong link between alcohol exposure and the metabolism rate of ketamine and amitriptyline, highlighting the increased importance of low-affinity enzymes post-alcohol consumption.
  • The research indicates that while CYP3A4 is the main enzyme for metabolizing both drugs, several other enzymes displayed no positive correlation or even negative correlations with ketamine metabolism.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!