Data in support of transcriptional regulation and function of Fas-antisense long noncoding RNA during human erythropoiesis.

Data Brief

Department of Medical Microbiology, Immunology and Cell Biology, Southern Illinois University School of Medicine, Springfield, IL, USA; Simmons Cancer Institute, Springfield, IL, USA.

Published: June 2016

This paper describes data related to a research article titled, "Fas-antisense long noncoding RNA is differentially expressed during maturation of human erythrocytes and confers resistance to Fas-mediated cell death" [1]. Long noncoding RNAs (lncRNAs) are increasingly appreciated for their capacity to regulate many steps of gene expression. While recent studies suggest that many lncRNAs are functional, the scope of their actions throughout human biology is largely undefined including human red blood cell development (erythropoiesis). Here we include expression data for 82 lncRNAs during early, intermediate and late stages of human erythropoiesis using a commercial qPCR Array. From these data, we identified lncRNA Fas-antisense 1 (Fas-AS1 or Saf) described in the research article. Also included are 5' untranslated sequences (UTR) for lncRNA Saf with transcription factor target sequences identified. Quantitative RT-PCR data demonstrate relative levels of critical erythroid transcription factors, GATA-1 and KLF1, in K562 human erythroleukemia cells and maturing erythroblasts derived from human CD34(+) cells. End point and quantitative RT-PCR data for cDNA prepared using random hexamers versus oligo(dT)18 revealed that lncRNA Saf is not effectively polyadenylated. Finally, we include flow cytometry histograms demonstrating Fas levels on maturing erythroblasts derived from human CD34(+) cells transduced using mock conditions or with lentivirus particles encoding for Saf.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4838931PMC
http://dx.doi.org/10.1016/j.dib.2016.03.106DOI Listing

Publication Analysis

Top Keywords

long noncoding
12
noncoding rna
8
human
8
human erythropoiesis
8
lncrna saf
8
quantitative rt-pcr
8
rt-pcr data
8
maturing erythroblasts
8
erythroblasts derived
8
derived human
8

Similar Publications

Background: Rex rabbit is famous for its silky and soft fur coat, a characteristic predominantly attributed to its hair follicles. Numerous studies have confirmed the crucial roles of mRNAs and non-coding RNAs (ncRNAs) in regulating key cellular processes such as cell proliferation, differentiation, apoptosis and immunity. However, their involvement in the regulation of the hair cycle in Rex rabbits remains unknown.

View Article and Find Full Text PDF

The Role of NF-κB/MIR155HG in Regulating the Stemness and Radioresistance in Breast Cancer Stem Cells.

Front Biosci (Landmark Ed)

January 2025

Department of Chemoradiotherapy, Ningbo No 2 Hospital, 315000 Ningbo, Zhejiang, China.

Background: Breast cancer stem cells (BCSCs) are instrumental in treatment resistance, recurrence, and metastasis. The development of breast cancer and radiation sensitivity is intimately pertinent to long non-coding RNA (lncRNA). This work is formulated to investigate how the lncRNA affects the stemness and radioresistance of BCSCs.

View Article and Find Full Text PDF

Dynamic Roles of RNA and RNA Epigenetics in HTLV-1 Biology.

Viruses

January 2025

Center for Retrovirus Research, Department of Veterinary Biosciences, The Ohio State University, Columbus, OH 43210, USA.

Since the discovery of RNA in the early 1900s, scientific understanding of RNA form and function has evolved beyond protein coding. Viruses, particularly retroviruses like human T-cell leukemia virus type 1 (HTLV-1), rely heavily on RNA and RNA post-transcriptional modifications to regulate the viral lifecycle, pathogenesis, and evasion of host immune responses. With the emergence of new sequencing technologies in the last decade, our ability to dissect the intricacies of RNA has flourished.

View Article and Find Full Text PDF

Long Non-Coding RNAs in Malignant Human Brain Tumors: Driving Forces Behind Progression and Therapy.

Int J Mol Sci

January 2025

State Key Laboratory of Resource Insects, Medical Research Institute, Southwest University, Chongqing 400715, China.

Long non-coding RNAs (lncRNAs) play a pivotal role in regulating gene expression and are critically involved in the progression of malignant brain tumors, including glioblastoma, medulloblastoma, and meningioma. These lncRNAs interact with microRNAs (miRNAs), proteins, and DNA, influencing key processes such as cell proliferation, migration, and invasion. This review highlights the multifaceted impact of lncRNA dysregulation on tumor progression and underscores their potential as therapeutic targets to enhance the efficacy of chemotherapy, radiotherapy, and immunotherapy.

View Article and Find Full Text PDF

Long non-coding RNAs (lncRNAs) are emerging as critical regulators in honeybee physiology, influencing development, behavior, and stress responses. This study investigates the role of lncRNA LOC113219358 in the immune response and neurophysiological regulation of brains. Using RNA interference (RNAi) and RNA sequencing (RNA-seq), we demonstrate that silencing lncLOC113219358 significantly alters the expression of 162 mRNA transcripts, including genes associated with detoxification, energy metabolism, and neuronal signaling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!