Epithelial-mesenchymal transition (EMT) is a molecular and cellular program in which epithelial cells lose their well-differentiated phenotype and adopt mesenchymal characteristics. This process, which occurs naturally during embryogenesis, has also been shown to be associated with cancer progression and with tumor recurrence following conventional therapies. Brachyury is a transcription factor that mediates EMT during development, and is aberrantly expressed in various human cancers where it promotes tumor cell EMT, metastatic dissemination, and resistance to conventional therapies. We have recently shown that very high expression of brachyury can protect tumor cells against immune cell-mediated cytotoxicity. In seeking to elucidate mechanisms of immunotherapy resistance, we have discovered a novel positive association between brachyury and mucin-1 (MUC1). MUC1 is overexpressed in the majority of carcinomas, and it has been shown to mediate oncogenic signaling and confer resistance to genotoxic agents. We found that MUC1 is concomitantly upregulated in tumor cell lines that highly express brachyury due to an enhancement of MUC1 mRNA stability. Analysis of patient lung tumor tissues also identified a positive association between these two proteins in the majority of samples. Inhibition of MUC1 by siRNA-based gene silencing markedly enhanced the susceptibility of brachyury-expressing cancer cells to killing by tumor necrosis-related apoptosis-inducing ligand (TRAIL) and to perforin/granzyme-dependent lysis by immune cytotoxic cells. These studies confirm a protective role for MUC1 in brachyury-expressing cancer cells, and suggest that inhibition of MUC1 can restore the susceptibility of mesenchymal-like cancer cells to immune attack.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4839328 | PMC |
http://dx.doi.org/10.1080/2162402X.2015.1117738 | DOI Listing |
J Cereb Blood Flow Metab
January 2025
KG Jebsen Centre for Brain Fluid Research, University of Oslo, Oslo, Norway.
A potential two-way passage of cells and substances between the brain and skull bone marrow may open for new insights into neurological disease. The arachnoid membrane was traditionally considered to restrict cells and larger molecules in CSF from entering the dura and bone marrow directly. However, new data on exchange between brain and skull bone marrow have recently emerged.
View Article and Find Full Text PDFCell Rep
January 2025
Ragon Institute of Mass General, MIT, and Harvard, 600 Main Street, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, 31 Ames Street, Cambridge, MA 02139, USA; Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA. Electronic address:
Tumors are inherently embedded in systemic physiology, which contributes metabolites, signaling molecules, and immune cells to the tumor microenvironment. As a result, any systemic change to host metabolism can impact tumor progression and response to therapy. In this review, we explore how factors that affect metabolic health, such as diet, obesity, and exercise, influence the interplay between cancer and immune cells that reside within tumors.
View Article and Find Full Text PDFSTAR Protoc
January 2025
Heinz-Nixdorf-Chair of Biomedical Electronics, TranslaTUM, School of Computation, Information and Technology, TUM, Germany; Munich Institute of Biomedical Engineering, TUM, Germany. Electronic address:
Blood cell aggregates are clinically useful biomarkers in a number of medical disorders. This protocol provides accurate and quantitative analysis of cell aggregates using a small volume of whole blood and imaging flow cytometry. We describe steps for sample collection, staining, and measurement.
View Article and Find Full Text PDFCancer Biol Ther
December 2025
Department of Hematology, Taixing People's Hospital Affiliated to Yangzhou University, Taixing, China.
Objectives: Acute T-cell lymphoblastic leukemia (T-ALL) is a severe hematologic malignancy with limited treatment options and poor long-term survival. This study explores the role of IKZF1 in regulating BCL-2 expression in T-ALL.
Methods: CUT&Tag and CUT&Run assays were employed to assess IKZF1 binding to the BCL-2 promoter.
Appl Biochem Biotechnol
January 2025
Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, Chongqing, China.
Cervical cancer is a common tumor in women and one of the common causes of cancer death in women. Due to the aggressive and non-specific nature of traditional chemotherapy, there is a growing need for new treatment modalities. Currently, tumor immunotherapy is increasingly garnering attention as a disruptive treatment approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!