Objective: To perform a comparative dosimetric analysis, based on computer simulations, of temporary balloon implants with (99m)Tc and balloon brachytherapy with high-dose-rate (HDR) (192)Ir, as boosts to radiotherapy. We hypothesized that the two techniques would produce equivalent doses under pre-established conditions of activity and exposure time.
Materials And Methods: Simulations of implants with (99m)Tc-filled and HDR (192)Ir-filled balloons were performed with the Siscodes/MCNP5, modeling in voxels a magnetic resonance imaging set related to a young female. Spatial dose rate distributions were determined. In the dosimetric analysis of the protocols, the exposure time and the level of activity required were specified.
Results: The (99m)Tc balloon presented a weighted dose rate in the tumor bed of 0.428 cGy.h(-1).mCi(-1) and 0.190 cGyh(-1).mCi(-1) at the balloon surface and at 8-10 mm from the surface, respectively, compared with 0.499 and 0.150 cGyh(-1).mCi(-1), respectively, for the HDR (192)Ir balloon. An exposure time of 24 hours was required for the (99m)Tc balloon to produce a boost of 10.14 Gy with 1.0 Ci, whereas only 24 minutes with 10.0 Ci segments were required for the HDR (192)Ir balloon to produce a boost of 5.14 Gy at the same reference point, or 10.28 Gy in two 24-minutes fractions.
Conclusion: Temporary (99m)Tc balloon implantation is an attractive option for adjuvant radiotherapy in breast cancer, because of its availability, economic viability, and similar dosimetry in comparison with the use of HDR (192)Ir balloon implantation, which is the current standard in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4851477 | PMC |
http://dx.doi.org/10.1590/0100-3984.2015.0010 | DOI Listing |
Phys Imaging Radiat Oncol
October 2024
Division of Medical Physics, Department of Radiation Oncology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, German Cancer Consortium (DKTK), Partner Site DKTK, Freiburg, Germany.
J Contemp Brachytherapy
June 2024
Department of Medical Physics, German Oncology Center, University Hospital of the European University, Limassol, Cyprus.
Purpose: The aim of this study was a retrospective dosimetric comparison of iridium-192 (Ir) high-dose-rate (HDR) interstitial brachytherapy plans using model-based dose calculation algorithm (MBDCA) following TG-186 recommendations and TG-43 dosimetry protocol for breast, head-and-neck, and lung patient cohorts, with various treatment concepts and prescriptions.
Material And Methods: In this study, 59 interstitial Ir HDR brachytherapy cases treated in our center (22 breast, 22 head and neck, and 15 lung) were retrospectively selected and re-calculated with TG-43 dosimetry protocol as well as with Acuros BV dose calculation algorithm, with dose to medium option based on computed tomography images. Treatment planning dose volume parameter differences were determined and their significance was assessed.
J Contemp Brachytherapy
August 2024
Department of Radiation Oncology, Indraprastha Apollo Hospital, New Delhi, India.
Purpose: The present study evaluated the dosimetric impact and compared the dose variations between the advanced collapsed cone engine (Task Group 186) and Task Group 43 plans for cervical cancer using tandem and ovoid applicators.
Material And Methods: Thirty cervical cancer patients underwent iridium-192 (Ir) high-dose-rate (HDR) intra-cavitary brachytherapy using tandem and ovoid applicator. Original treatment plans for all patients were created using TG-43 dose calculation formalism.
J Contemp Brachytherapy
August 2024
Department of Oncology and Radiotherapy, University Clinical Centre in Gdan,sk, Gdan,sk, Poland.
A case report of non-classical treatment choice for mycosis fungoides (MF) presented on the left upper eyelid and forehead. Superficial brachytherapy using 3D technique was prescribed to preserve the lens's functionality, and successfully eliminate malignant lesion. Treatment was conducted with high-dose-rate (HDR) brachytherapy using iridium-192 (Ir) source as a base and Flexitron device as an afterloader.
View Article and Find Full Text PDFJ Appl Clin Med Phys
January 2025
Medical Physics Laboratory, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
Purpose: To provide beam quality correction factors ( ) for detectors used in Ir brachytherapy dosimetry measurements.
Materials And Methods: Ten detectors were studied, including the PTW 30013 and Exrading12 Farmer large cavity chambers, seven medium (0.1-0.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!