We study the ray optics of generalized lenses (glenses), which are ideal thin lenses generalized to have different object- and image-sided focal lengths, and the most general light-ray-direction-changing surfaces that stigmatically image any point in object space to a corresponding point in image space. Gabor superlenses [UK patent541,753 (1940); J. Opt. A1, 94 (1999)JOAOF81464-425810.1088/1464-4258/1/1/013] can be seen as pixelated realizations of glenses. Our analysis is centered on the nodal point. Whereas the nodal point of a thin lens always resides in the lens plane, that of a glens can reside anywhere on the optical axis. Utilizing the nodal point, we derive simple equations that describe the mapping between object and image space and the light-ray-direction change. We demonstrate our findings with the help of ray-tracing simulations. Glenses allow novel optical instruments to be realized, at least theoretically, and our results facilitate the design and analysis of such devices.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.33.000962 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!