The distributed-spline-based aberration reconstruction (D-SABRE) method is proposed for distributed wavefront reconstruction with applications to large-scale adaptive optics systems. D-SABRE decomposes the wavefront sensor domain into any number of partitions and solves a local wavefront reconstruction problem on each partition using multivariate splines. D-SABRE accuracy is within 1% of a global approach with a speedup that scales quadratically with the number of partitions. The D-SABRE is compared to the distributed cumulative reconstruction (CuRe-D) method in open-loop and closed-loop simulations using the YAO adaptive optics simulation tool. D-SABRE accuracy exceeds CuRe-D for low levels of decomposition, and D-SABRE proved to be more robust to variations in the loop gain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.33.000817 | DOI Listing |
Phys Rev Lett
December 2024
Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal and INESC TEC, Centre of Applied Photonics, Rua do Campo Alegre 687, 4169-007 Porto, Portugal.
Easily accessible through tabletop experiments, paraxial fluids of light are emerging as promising platforms for the simulation and exploration of quantumlike phenomena. In particular, the analogy builds on a formal equivalence between the governing model for a Bose-Einstein condensate under the mean-field approximation and the model of laser propagation inside nonlinear optical media under the paraxial approximation. Yet, the fact that the role of time is played by the propagation distance in the analog system imposes strong bounds on the range of accessible phenomena due to the limited length of the nonlinear medium.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
December 2024
High Energy Accelerator Research Organization, Tsukuba, Ibaraki, 305-0801, Japan.
Purpose: In this paper, we describe an algebraic reconstruction algorithm with a total variation regularization (ART + TV) based on the Superimposed Wavefront Imaging of Diffraction-enhanced X-rays (SWIDeX) method to effectively reduce the number of projections required for differential phase-contrast CT reconstruction.
Methods: SWIDeX is a technique that uses a Laue-case Si analyzer with closely spaced scintillator to generate second derivative phase-contrast images with high contrast of a subject. When the projections obtained by this technique are reconstructed, a Laplacian phase-contrast tomographic image with higher sparsity than the original physical distribution of the subject can be obtained.
Sensors (Basel)
December 2024
School of Opto-Electronics Engineering, Xi'an Technological University, Xi'an 710021, China.
To overcome the limitations of phase sampling points in testing aspherical surface wavefronts using traditional interferometers, we propose a high-spatial-resolution method based on multi-directional orthogonal lateral shearing interferometry. In this study, we provide a detailed description of the methodology, which includes the theoretical foundations and experimental setup, along with the results from simulations and experiments. By establishing a relational model between the multi-directional differential wavefront and differential Zernike polynomials, we demonstrate high-spatial-resolution wavefront reconstruction using multi-directional orthogonal lateral shearing interferometry.
View Article and Find Full Text PDFThe Shack-Hartmann wavefront sensor (SHWS) is known for its high accuracy and robust wavefront sensing capabilities. However, conventional compact SHWS confronts limitations in measuring field-of-view to meet emerging applications' increasing demands. Here, we propose a high-density lens transfer function retrieval (HDLTR)-based SHWS to expand its field-of-view.
View Article and Find Full Text PDFPhotoacoustics
December 2024
Ministry-of-Education Key Laboratory of Modern Acoustics, Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, China.
To correct the refraction aberration induced by the skull in photoacoustic imaging, a method for phase distortion compensation is proposed based on the angular spectrum theory with the aid of ultrasonic signals. This method first updates the speed of sound distribution by iteratively performing aberration correction in the ultrasonic reconstruction. Then the speed of sound distribution obtained with ultrasound-assisted serves as prior knowledge to address phase distortion compensation by adjusting the phase shift factor of the wavefront in different media.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!