AI Article Synopsis

  • A compact silicon polarization beam splitter (PBS) is created using an asymmetrical directional coupler with a wide and a narrow waveguide that are optimized for TE and TM polarizations.
  • The design allows for near-perfect coupling of the TM mode while the TE mode experiences significant uncoupling, making the PBS efficient despite its short length of about 8.13 μm.
  • The simulation results indicate that the PBS has a broad operational bandwidth of around 100 nm, a large extinction ratio greater than 10 dB, and low insertion loss under 0.61 dB, while also considering fabrication tolerances.

Article Abstract

A compact silicon polarization beam splitter (PBS) is proposed based on an asymmetrical directional coupler consisting of a wide waveguide and a dielectric loaded narrow waveguide. Given that TE and TM polarizations are the dominant mode in the wide and narrow waveguides, respectively, a perfect phase-matching condition in the TM mode but a huge phase mismatching in the TE mode can be achieved. Therefore, the TE mode is almost uncoupled regardless of device length but the TM mode can only completely couple to the cross port at an appropriate coupling length. An ultrashort (∼8.13  μm long) PBS is designed based on a silicon-on-insulator nanowire with a loading refractive index of 2.0 and a gap width of 200 nm. Numerical simulations show that the proposed PBS has a broad bandwidth (∼100  nm) with large extinction ratio (>10  dB) and low insertion loss (<0.61  dB). The fabrication-error tolerance of the PBS is also discussed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.003313DOI Listing

Publication Analysis

Top Keywords

polarization beam
8
beam splitter
8
based asymmetrical
8
asymmetrical directional
8
directional coupler
8
mode
5
813  μm length
4
length cmos
4
cmos compatible
4
compatible polarization
4

Similar Publications

In the subauroral zone at the boundary of the auroral oval in the evening and night hours during geomagnetic disturbances, a narrow (about 1°-2°) and extended structure (several hours in longitude) is formed. It is known as a polarization jet (PJ) or the subauroral ion drift (SAID). The PJ/SAID is a fast westward ion drift and is one of the main signatures of a geomagnetic disturbance in the subauroral ionosphere at the altitudes of the F-layer, when the geomagnetic AE index reaches more than 500 nT.

View Article and Find Full Text PDF

In this paper, we review our work on the manipulation of magnetization in ferromagnetic semiconductors (FMSs) using electric-current-induced spin-orbit torque (SOT). Our review focuses on FMS layers from the (Ga,Mn)As zinc-blende family grown by molecular beam epitaxy. We describe the processes used to obtain spin polarization of the current that is required to achieve SOT, and we briefly discuss methods of specimen preparation and of measuring the state of magnetization.

View Article and Find Full Text PDF

Artificial microstructures, especially metamaterials, have garnered increasing attention in numerous applications due to their rich and distinctive properties. Starting from the principle of multi-beam interference, we have theoretically devised a beam configuration consisting of six symmetrically distributed coherent beams to generate two-dimensional microstructures with diverse shapes of unitcells under different polarization combinations. In particular, a split-ring metamaterial template is achieved with two adjacent circularly and four linearly polarized beams with such single-step holographic interferometry.

View Article and Find Full Text PDF

This paper explores a multi-directional (multiple directional) shearing synchronous polarization phase-shifting interferometer that utilizes a birefringent crystal displacer. This design effectively mitigates nonlinear issues and environmental influences commonly encountered in synchronous phase-shifting interferometry. Additionally, it enables the acquisition of shear wavefront information from multiple directions.

View Article and Find Full Text PDF

Tunable polarization entangled photon-pair source in rhombohedral boron nitride.

Sci Adv

January 2025

National Laboratory of Solid State Microstructures and School of Physics, Nanjing University, Nanjing 210093, China.

Entangled photon-pair sources are pivotal in various quantum applications. Miniaturizing the quantum devices to meet the requirement in limited space applications drives the search for ultracompact entangled photon-pair sources. The rise of two-dimensional (2D) semiconductors has been demonstrated as ultracompact entangled photon-pair sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!