Aims: Protein misfolding occurs in neurodegenerative diseases, including Parkinson's disease (PD). In endoplasmic reticulum (ER), an overload of misfolded proteins, particularly alpha-synuclein (αSyn) in PD, may cause stress and activate the unfolded protein response (UPR). This UPR includes activation of chaperones, such as protein disulphide isomerase (PDI), which assists refolding and contributes to removal of unfolded proteins. Although up-regulation of PDI is considered a protective response, its activation is coupled with increased activity of ER oxidoreductin 1 (Ero1), producing harmful hydroperoxide. The objective of this study was to assess whether inhibition of excessive oxidative folding protects against neuronal death in well-established 1-methyl-4-phenylpyridinium (MPP(+)) models of PD.

Results: We found that the MPP(+) neurotoxicity and accumulation of αSyn in the ER are prevented by inhibition of PDI or Ero1α. The MPP(+) neurotoxicity was associated with a reductive shift in the ER, an increase in the reduced form of PDI, an increase in intracellular Ca(2+), and an increase in Ca(2+)-sensitive calpain activity. All these MPP(+)-induced changes were abolished by inhibiting PDI. Importantly, inhibition of PDI resulted in increased autophagy, and it prevented MPP(+)-induced death of dopaminergic neurons in Caenorhabditis elegans.

Innovation And Conclusion: Our data indicate that although inhibition of PDI suppresses excessive protein folding and ER stress, it induces clearance of aggregated αSyn by autophagy as an alternative degradation pathway. These findings suggest a novel model explaining the contribution of ER dysfunction to MPP(+)-induced neurodegeneration and highlight PDI inhibitors as potential treatment in diseases involving protein misfolding. Antioxid. Redox Signal. 25, 485-497.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ars.2015.6402DOI Listing

Publication Analysis

Top Keywords

inhibition pdi
12
inhibition excessive
8
excessive oxidative
8
protein folding
8
parkinson's disease
8
protein misfolding
8
pdi
8
mpp+ neurotoxicity
8
protein
6
inhibition
5

Similar Publications

Glioblastoma presents a significant treatment challenge due to the blood-brain barrier (BBB) hindering drug delivery, and the overexpression of matrix metalloproteinases (MMPs), which promotes tumor invasiveness. This study introduces a novel nanostructured lipid carrier (NLC) system designed for the delivery of batimastat, an MMP inhibitor, across the BBB and into the glioblastoma microenvironment. The NLCs were functionalized with epidermal growth factor (EGF) and a transferrin receptor-targeting construct to enhance BBB penetration and entrapment within the tumor microenvironment.

View Article and Find Full Text PDF

Polysaccharides from L. were investigated for their structural characterization and anti-inflammatory activity. Four low polymer dispersity index (PDI) subfractions were obtained: DRP-1 (153.

View Article and Find Full Text PDF

: We developed delafloxacin (Dela)-loaded PLGA nanoparticles (PNPs) for potential ocular application a topical route to treat eye infections caused by Gram-positive and Gram-negative bacteria. : Dela-PNPs were formulated using the emulsification-solvent evaporation method and stabilized using poly(vinyl alcohol) (PVA). Size and morphology were characterized by using dynamic light scattering (DLS) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

This study explores the potential antagonistic effects of selenium-doped zinc oxide nanoparticles (Se-ZnO NPs), synthesized through a sustainable approach, on maize charcoal rot induced by the fungus Macrophomina phaseolina. Se-ZnO-NPs were prepared using the rhizobium extract of Curcuma longa and characterized for their physicochemical properties. Characterization included various in vitro parameters such as FTIR, ICP-MS, particle size, PDI, and zeta potential.

View Article and Find Full Text PDF

Solid lipid nanoparticles for increased oral bioavailability of acalabrutinib in chronic lymphocytic leukaemia.

Discov Nano

December 2024

Department of Pharmacy, Birla Institute of Technology and Science Pilani, BITS-Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Medchal District, Telangana, 500078, India.

Acalabrutinib (ACP) is a first-line treatment for chronic lymphocytic leukemia but suffers from poor and variable oral bioavailability due to its pH-dependent solubility, CYP3A4 metabolism, and P-gp efflux. Thus, the objective of this study was to improve the solubility and dissolution behaviour, in turn enhancing bioavailability, by formulating solid lipid nanoparticles (SLNs). ACP loaded SLNs (ACP-SLNs) were prepared via solvent-free hot emulsification followed by a double sonication process.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!