We present a comprehensive analytical approximation for array modes (both the modal fields and their associated propagation constants) for 1D photonic crystal superlattices (i.e., large periodic arrays of repeated sequences of different coupled waveguides/lasers). In this class, a regular periodicity of a photonic lattice is supplemented with the additional periodicity of a larger scale. Our approximation is a vectorial approach, accounting for the TE and TM polarizations. It can be applied to both the low- and high-contrast photonic devices. We used the model of standing waves for analytical evaluation of envelopes of array modes in a photonic superlattice. Combination of the model of standing waves with the coupled-mode formalism for infinite photonic superlattices allows evaluation of propagation constants of the array modes. Both the evaluations require only a fraction of a second for computation. Still, the results, acquired with the analytical approximation, are very close to those of well-established approaches. Furthermore, for the first time, analytical expressions for the modal fields and propagation constants become available.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.55.002819DOI Listing

Publication Analysis

Top Keywords

array modes
16
analytical approximation
12
propagation constants
12
modes photonic
8
photonic crystal
8
crystal superlattices
8
modal fields
8
model standing
8
standing waves
8
photonic
7

Similar Publications

Dispersive nodal fermions along grain boundaries in Floquet topological crystals.

Sci Rep

January 2025

Department of Physics, Lehigh University, Bethlehem, Pennsylvania, 18015, USA.

Driven quantum materials often feature emergent topology, otherwise absent in static crystals. Dynamic bulk-boundary correspondence, encoded by nondissipative gapless modes residing near the Floquet zone center and/or boundaries, is its most prominent example. Here we show that topologically robust gapless dispersive modes appear along the grain boundaries, embedded in the interior of Floquet topological crystals, when the Floquet-Bloch band inversion occurring at a finite momentum ( ) and the Burgers vector ( ) of the constituting array of dislocations satisfy (modulo ).

View Article and Find Full Text PDF

Interference of surface plasmons has been widely utilized in optical metrology for applications such as high-precision sensing. In this paper, we introduce a surface plasmon interferometer with the potential to be arranged in arrays for parallel multiplexing applications. The interferometer features two grating couplers that excite surface plasmon polariton (SPP) waves traveling along a gold-air interface before converging at a gold nanoslit where they interfere.

View Article and Find Full Text PDF

We propose and demonstrate a data-driven plasmonic metascreen that efficiently absorbs incident light over a wide spectral range in an ultra-thin silicon film. By embedding a double-nanoring silver array within a 20 nm ultrathin amorphous silicon (a-Si) layer, we achieve a significant enhancement of light absorption. This enhancement arises from the interaction between the resonant cavity modes and localized plasmonic modes, requiring precise tuning of plasmon resonances to match the absorption region of the silicon active layer.

View Article and Find Full Text PDF

SPDC photon-pairs exhibit spatial correlations which can be measured using detector arrays sensitive to single photons. However, these detector arrays have multiple readout modes and in order to optimise detection it is important to select the optimum mode to detect the correlations against a background of optical and electronic noise. These quantum correlations enable applications in imaging, sensing, communication, and optical processing.

View Article and Find Full Text PDF

Damage in composite laminates evolves through complex interactions of different failure modes, influenced by load type, environment, and initial damage, such as from transverse impact. This paper investigates damage growth in cross-ply polymeric matrix laminates under tensile load, focusing on three primary failure modes: transverse matrix cracks, delaminations, and fiber breaks in the primary loadbearing 0-degree laminae. Acoustic emission (AE) techniques can monitor and quantify damage in real time, provided the signals from these failure modes can be distinguished.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!