Interlayer grating-to-grating optical interconnect coupling efficiency is simulated and optimized using rigorous coupled-wave analysis (RCWA) for the case of binary rectangular-groove gratings. The "equivalent index slab (EIS)" concept is proposed to alleviate the numerical sensitivity problem inherent in the RCWA-leaky-wave approach, making the method applicable to any multilayer structure that has an arbitrary grating profile, large refractive-index differences, and a limited grating length. The method is easy to implement and computationally efficient and can provide optimal designs based on the system designer's need. To determine the viability of the RCWA-EIS approach, results are compared to those obtained using the finite-difference time-domain method, and an excellent agreement is found.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.55.002601 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!