For the 2nd and 3rd river basin management cycles (2015-2027) of the Water Framework Directive (WFD), EU Member States are required to fully integrate climate change into the process of river basin management planning (RBMP). Complying with the main WFD objective of achieving 'good ecological status' in all water bodies in Denmark requires Programmes of Measures (PoMs) to reduce nitrogen (N) pollution from point and diffuse sources. Denmark is among the world's most intensively farmed countries and in spite of thirty years of significant policy actions to reduce diffuse nutrient emissions, there is still a need for further reductions. In addition, the impacts of climate change are projected to lead to a situation where nutrient loads will have to be reduced still further in comparison to current climate conditions. There is an urgent need to address this challenge in WFD action programmes in order to develop robust and cost-effective adaptation strategies for the next WFD RBMP cycles. The aim of this paper is to demonstrate and discuss how a map-based PoMs assessment tool can support the development of adaptive and cost-effective strategies to reduce N losses in the Isefjord and Roskilde Fjord River Basin in the north east of Denmark. The tool facilitates assessments of the application of agri-environmental measures that are targeted towards low retention agricultural areas, where limited or no surface and subsurface N reduction takes place. Effects of climate change on nitrate leaching were evaluated using the dynamic agro-ecosystem model 'Daisy'. Results show that nitrate leaching rates increase by approx. 25% under current management practices. This impact outweighs the expected total N reduction effect of Baseline 2015 and the first RBMP in the case study river basin. The particular PoMs investigated in our study show that WFD N reduction targets can be achieved by targeted land use changes on approx. 4% of the agricultural area under current climate conditions and approx. 9% of the agricultural area, when projected climate change impacts on nitrate leaching rates are included in the assessment. The study highlights the potential of the PoMs assessment tool to assist in evaluation of alternative WFD RBMP scenarios to achieve spatially targeted and cost-effective reductions of N loads at catchment scale in the context of a changing climate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2016.04.043DOI Listing

Publication Analysis

Top Keywords

river basin
20
climate change
16
assessment tool
12
nitrate leaching
12
action programmes
8
climate
8
changing climate
8
basin management
8
current climate
8
climate conditions
8

Similar Publications

The Gravity Recovery and Climate Experiment (GRACE) and its follow-on (GRACE-FO) missions have provided estimates of Terrestrial Water Storage Anomalies (TWSA) since 2002, enabling the monitoring of global hydrological changes. However, temporal gaps within these datasets and the lack of TWSA observations prior to 2002 limit our understanding of long-term freshwater variability. In this study, we develop GRAiCE, a set of four global monthly TWSA reconstructions from 1984 to 2021 at 0.

View Article and Find Full Text PDF

The Jordan Valley (JV) is a critical region where the interplay of water, energy, food, and ecosystem (WEFE) dynamics presents both challenges and opportunities for sustainable development and climate change mitigation and adaptation. In such a transboundary river basin with acute nexus problems and a long history of conflicts, it is essential that conscious efforts are made to pluralize the debate and actively encourage stakeholders' empowerment, participation and fair collaboration in strategic planning. An integrated framework for participatory strategic planning in the WEFE nexus is proposed, which has been developed in the context of the JV case study.

View Article and Find Full Text PDF

Biomonitoring of the Paraopeba river: Cytotoxic, genotoxic and metal concentration analysis three years after the Brumadinho dam rupture - Minas Gerais, Brazil.

Sci Total Environ

January 2025

Laboratório de Análises Genéticas, Departamento de Ciências Naturais e da Terra, Universidade do Estado de Minas Gerais, Divinópolis, MG 35501-170, Brazil. Electronic address:

The rupture of Vale S.A. mining tailings dam in Brumadinho, Brazil, in January 2019 had significant environmental impacts on the Paraopeba River basin.

View Article and Find Full Text PDF

Tracking Boats on Amazon Rivers-A Case Study with the LoRa/LoRaWAN.

Sensors (Basel)

January 2025

Electronic and Information Technology Research and Development Center (CETELI), Federal University of Amazonas, Manaus 69067-005, AM, Brazil.

The Amazon region has the largest hydrographic basin in the world. The rivers act as roads, and boats serve as vehicles for transporting passengers and cargo to large urban centers, municipalities, riverside communities, villages, and settlements. The Amazon River transportation system faces critical gaps due to the lack of land infrastructure in certain areas, which makes rivers essential for commerce and access to isolated communities.

View Article and Find Full Text PDF

Strength Tests and Mechanism of Composite Stabilized Lightweight Soil Using Dredged Sludge.

Materials (Basel)

January 2025

School of Civil Engineering, Architecture and Environment, Hubei University of Technology, Wuhan 430068, China.

To achieve resourceful utilization of dredged sludge, lightweight treatment was performed on sludge from Xunsi River in Wuhan using fly ash, cement, and expanded polystyrene (EPS) particles. Density tests and unconfined compressive strength (UCS) tests were conducted on the composite stabilized sludge lightweight soil to determine the optimal mix ratio for high-quality roadbed fill material with low self-weight and high strength. Subsequently, microstructural tests, including X-ray diffraction (XRD) and scanning electron microscopy (SEM), were conducted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!