Maintained exposure to a specific stimulus property-such as size, color, or motion-induces perceptual adaptation aftereffects, usually in the opposite direction to that of the adaptor. Here we studied how adaptation to size affects perceived position and visually guided action (saccadic eye movements) to that position. Subjects saccaded to the border of a diamond-shaped object after adaptation to a smaller diamond shape. For saccades in the normal latency range, amplitudes decreased, consistent with saccading to a larger object. Short-latency saccades, however, tended to be affected less by the adaptation, suggesting that they were only partly triggered by a signal representing the illusory target position. We also tested size perception after adaptation, followed by a mask stimulus at the probe location after various delays. Similar size adaptation magnitudes were found for all probe-mask delays. In agreement with earlier studies, these results suggest that the duration of the saccade latency period determines the reference frame that codes the probe location.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC5053361PMC
http://dx.doi.org/10.1167/16.7.2DOI Listing

Publication Analysis

Top Keywords

adaptation size
8
probe location
8
adaptation
7
size saccades
4
saccades long
4
long short
4
short latencies
4
latencies maintained
4
maintained exposure
4
exposure specific
4

Similar Publications

Despite the acknowledged merits of precision oncology (PO) and its increasing global implementation, its full potential for advancing care and prevention remains unrealized. The benefits are currently accessible to only limited patient segments because of multifaceted barriers. Successful implementation hinges on various factors-scientific complexities not limited to technical, clinical, regulatory, economic, administrative, and health care policy-related challenges.

View Article and Find Full Text PDF

Background: The effects of ionizing radiation (IR) involve a highly orchestrated series of events in cells, including DNA damage and repair, cell death, and changes in the level of proliferation associated with the stage of the cell cycle. A large number of existing studies in literature have examined the activity of genes and their regulators in mammalian cells in response to high doses of ionizing radiation. Although there are many studies, the research in effect of low doses of ionizing radiation remains limited.

View Article and Find Full Text PDF

The development of photoresponsive ferroelastics, which couple light-induced macroscopic mechanical and microscopic domain properties, represents a frontier in materials science with profound implications for advanced functional applications. In this study, we report the rational design and synthesis of two new organic-inorganic hybrid ferroelastic crystals, (MA)(MeN)[Fe(CN)(NO)] (MA = methylammonium) () and (MA)(MeNOH)[Fe(CN)(NO)] (), using a dual-organic molecular design strategy that exploits hydrogen-bonding interactions for tailoring ferroelastic properties. Specifically, exhibits a two-step phase transition at 138 and 242 K, while the introduction of a hydroxyl group in stabilizes its ferroelastic phase to a significantly higher temperature, achieving a phase transition at 328 K, 86 K above that of .

View Article and Find Full Text PDF

Monomer compounds from natural products are the major source of active pharmaceutical molecules, which provide great opportunities for discovering of new drugs. However, natural products contain a large number of rather complex compounds. It is difficult to obtain high-purity monomer compounds from complex natural products.

View Article and Find Full Text PDF

The black bream () is an economically important species widely distributed in China, with its geographic populations potentially having undergone differentiations and local adaptations. In this study, we presented a chromosome-level genome assembly of this species and investigated genetic differentiations of its populations that are allopatric (the northern one) and sympatric (the Poyang Lake) to its kin species, the blunt-snout bream (), using whole genome resequencing analysis. The results showed that the genome size of black bream was 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!