Cystathionine-γ lyase-derived hydrogen sulfide mediates the cardiovascular protective effects of moxonidine in diabetic rats.

Eur J Pharmacol

Department of Pharmacology and Toxicology, Brody School of Medicine, East Carolina University, Greenville, NC 27834, USA. Electronic address:

Published: July 2016

Blunted cystathionine-γ lyase (CSE) activity (reduced endogenous H2S-level) is implicated in hypertension and myocardial dysfunction in diabetes. Here, we tested the hypothesis that CSE derived H2S mediates the cardiovascular protection conferred by the imidazoline I1 receptor agonist moxonidine in a diabetic rat model. We utilized streptozotocin (STZ; 55mg/kg i.p) to induce diabetes in male Wistar rats. Four weeks later, STZ-treated rats received vehicle, moxonidine (2 or 6mg/kg; gavage), CSE inhibitor DL-propargylglycine, (37.5mg/kg i.p) or DL-propargylglycine with moxonidine (6mg/kg) for 3 weeks. Moxonidine improved the glycemic state, and reversed myocardial hypertrophy, hypertension and baroreflex dysfunction in STZ-treated rats. Ex vivo studies revealed that STZ caused reductions in CSE expression/activity, H2S and nitric oxide (NO) levels and serum adiponectin and elevations in myocardial imidazoline I1 receptor expression, p38 and extracellular signal-regulated kinase, ERK1/2, phosphorylation and lipid peroxidation (expressed as malondialdehyde). Moxonidine reversed these biochemical responses, and suppressed the expression of death associated protein kinase-3. Finally, pharmacologic CSE inhibition (DL-propargylglycine) abrogated the favorable cardiovascular, glycemic and biochemical responses elicited by moxonidine. These findings present the first evidence for a mechanistic role for CSE derived H2S in the glycemic control and in the favorable cardiovascular effects conferred by imidazoline I1 receptor activation (moxonidine) in a diabetic rat model.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4893977PMC
http://dx.doi.org/10.1016/j.ejphar.2016.04.054DOI Listing

Publication Analysis

Top Keywords

moxonidine diabetic
12
imidazoline receptor
12
mediates cardiovascular
8
moxonidine
8
cse derived
8
derived h2s
8
conferred imidazoline
8
diabetic rat
8
rat model
8
stz-treated rats
8

Similar Publications

Background: Moxonidine, an imidazoline I receptor agonist, is an effective antihypertensive drug that was shown to improve insulin sensitivity. RAAS-blockers are recommended as first-line therapy in patients with diabetes, alone or in combination with a calcium-channel antagonist or a diuretic.

Aims: This study compared the effects of moxonidine and ramipril on blood pressure (BP) and glucose metabolism in overweight patients with mild-to-moderate hypertension and impaired fasting glucose or type 2 diabetes.

View Article and Find Full Text PDF

This study aimed to investigate the effect of the sympatholytic drug moxonidine on atherosclerosis. The effects of moxonidine on oxidised low-density lipoprotein (LDL) uptake, inflammatory gene expression and cellular migration were investigated in vitro in cultured vascular smooth muscle cells (VSMCs). The effect of moxonidine on atherosclerosis was measured by examining aortic arch Sudan IV staining and quantifying the intima-to-media ratio of the left common carotid artery in apolipoprotein E-deficient (ApoE) mice infused with angiotensin II.

View Article and Find Full Text PDF

Moxonidine is an oral antihypertensive drug from the group of 2nd generation sympatholytics. In patients with mild to moderate hypertension, moxonidine lowers blood pressure (BP) as effectively as most first-line antihypertensives when used as monotherapy - if appropriate, and is also an effective adjunctive therapy in combination with other antihypertensives. It improves metabolic profile in patients with hypertension and diabetes mellitus or impaired glucose tolerance, is very well tolerated, has a low potential for drug interactions and is administered in a single daily dose.

View Article and Find Full Text PDF

Background: Sympathetic activity and insulin resistance have recently been linked with chronic tendon and musculoskeletal pain. Polycystic ovarian syndrome is linked with insulin resistance and increased sympathetic drive and was therefore an appropriate condition to study the effects of modulating sympathetic activity on Achilles tendon and musculoskeletal symptoms.

Methods: A secondary analysis of a double-blinded, randomised controlled trial on women with polycystic ovarian syndrome was conducted.

View Article and Find Full Text PDF

The sympathetic nervous system (SNS) contribution to long-term setting of blood pressure (BP) and hence hypertension has been a continuing controversy over many decades. However, the contribution of increased sympathetic vasomotor tone to the heart, kidney, and blood vessels has been suggested as a major influence on the development of high BP which affects 30-40% of the population. This is relevant to hypertension associated with chronic stress, being overweight or obese as well to chronic kidney disease.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!