Background: Mitochondrial dysfunction would ultimately lead to myocardial cell apoptosis and death during ischemia-reperfusion injuries. Autophagy could ameliorate mitochondrial dysfunction by autophagosome forming, which is a catabolic process to preserve the mitochondrial's structural and functional integrity. HO-1 induction and expression are important protective mechanisms. This study in order to investigate the role of HO-1 during mitochondrial damage and its mechanism.

Methods And Results: The H9c2 cardiomyocyte cell line were incubated by hypoxic and then reoxygenated for the indicated time (2, 6, 12, 18, and 24 h). Cell viability was tested with CCK-8 kit. The expression of endogenous HO-1(RT-PCR and Western blot) increased with the duration of reoxygenation and reached maximum levels after 2 hours of H/R; thereafter, the expression gradually decreased to a stable level. Mitochondrial dysfunction (Flow cytometry quantified the ROS generation and JC-1 staining) and autophagy (The Confocal microscopy measured the autophagy. RFP-GFP-LC3 double-labeled adenovirus was used for testing.) were induced after 6 hours of H/R. Then, genetic engineering technology was employed to construct an Lv-HO1-H9c2 cell line. When HO-1 was overexpressed, the LC3II levels were significantly increased after reoxygenation, p62 protein expression was significantly decreased, the level of autophagy was unchanged, the mitochondrial membrane potential was significantly increased, and the mitochondrial ROS level was significantly decreased. Furthermore, when the HO-1 inhibitor ZnPP was applied the level of autophagy after reoxygenation was significantly inhibited, and no significant improvement in mitochondrial dysfunction was observed.

Conclusions: During myocardial hypoxia-reoxygenation injury, HO-1 overexpression induces autophagy to protect the stability of the mitochondrial membrane and reduce the amount of mitochondrial oxidation products, thereby exerting a protective effect.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4854406PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0153587PLOS

Publication Analysis

Top Keywords

mitochondrial dysfunction
20
mitochondrial
10
hours h/r
8
level autophagy
8
mitochondrial membrane
8
ho-1
6
autophagy
6
dysfunction
5
ho-1 protects
4
protects hypoxia/reoxygenation-induced
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!