Two open-label, single-dose, parallel-group studies assessed effects of renal and hepatic impairment on the pharmacokinetics of a hydrocodone extended-release (ER) formulation developed with the CIMA Abuse-Deterrence Technology platform. Forty-eight subjects with normal renal function or varying degrees of renal impairment received hydrocodone ER 45 mg (study 1); 16 subjects with normal hepatic function or moderate hepatic impairment received hydrocodone ER 15 mg (study 2). Blood samples were obtained predose and through 144 hours postdose. Mean maximum observed plasma hydrocodone concentration (Cmax ) in subjects with normal renal function, mild, moderate, and severe impairment, and end-stage renal disease was 28.6, 33.4, 42.4, 36.5, and 31.6 ng/mL, and mean area under the plasma hydrocodone concentration-versus-time curve from time 0 to infinity (AUC0-∞ ) was 565, 660, 973, 983, and 638 ng·h/mL, respectively. Incidence of adverse events was 57%, 38%, 44%, 33%, and 56%, respectively. Mean Cmax with normal hepatic function and moderate impairment was 10.1 and 13.0 ng/mL, and mean AUC0-∞ was 155 and 269 ng·h/mL, respectively. Incidence of adverse events was 38% in both groups. Altered systemic exposure in renally or hepatically impaired populations (up to ∼70% higher) should be considered when titrating to an effective dose of hydrocodone ER.

Download full-text PDF

Source
http://dx.doi.org/10.1002/cpdd.238DOI Listing

Publication Analysis

Top Keywords

hepatic impairment
12
subjects normal
12
effects renal
8
renal impairment
8
impairment pharmacokinetics
8
hydrocodone
8
pharmacokinetics hydrocodone
8
hydrocodone extended-release
8
abuse-deterrence technology
8
normal renal
8

Similar Publications

Non-alcoholic fatty liver disease (NAFLD) is a chronic condition characterized by hepatic steatosis in the absence of significant alcohol consumption and is increasingly recognized as the hepatic manifestation of metabolic syndrome (MetS). This review aims to explore the molecular mechanisms underlying the interaction between NAFLD, insulin resistance (IR), and MetS, with a focus on identifying therapeutic targets. A comprehensive review of existing literature on NAFLD, IR, and MetS was conducted.

View Article and Find Full Text PDF

Sotorasib is a novel KRAS inhibitor that has shown robust efficacy, safety, and tolerability in patients with KRAS mutation. The objectives of the population pharmacokinetic (PK) analysis were to characterize sotorasib population PK in healthy subjects and patients with advanced solid tumors with KRAS mutation from 6 clinical studies, evaluate the effects of intrinsic and extrinsic factors on PK parameters, and perform simulations to further assess the impact of identified covariates on sotorasib exposures. A two-compartment disposition model with three transit compartments for absorption and time-dependent clearance and bioavailability well described sotorasib PK.

View Article and Find Full Text PDF

Purpose: Obesity and type 2 diabetes (T2DM) are major risk factors for hepatic steatosis. Diet or bariatric surgery can reduce liver volume, fat content, and inflammation. However, little is known about their effects on liver function, as evaluated here using the LiMAx test.

View Article and Find Full Text PDF

Mitochondrial dysfunction in drug-induced hepatic steatosis: recent findings and current concept.

Clin Res Hepatol Gastroenterol

January 2025

INSERM, INRAE, Univ Rennes, Institut NUMECAN, UMR_S1317, 35000 Rennes, France. Electronic address:

Mitochondrial activity is necessary for the maintenance of many liver functions. In particular, mitochondrial fatty acid oxidation (FAO) is required for energy production and lipid homeostasis. This key metabolic pathway is finely tuned by the mitochondrial respiratory chain (MRC) activity and different transcription factors such as peroxisome proliferator-activated receptor α (PPARα).

View Article and Find Full Text PDF

Influence of Ageing on the Pharmacodynamics and Pharmacokinetics of Chronically Administered Medicines in Geriatric Patients: A Review.

Clin Pharmacokinet

January 2025

Discipline of Pharmaceutical Sciences, School of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.

As people age, the efficiency of various regulatory processes that ensure proper communication between cells and organs tends to decline. This deterioration can lead to difficulties in maintaining homeostasis during physiological stress. This includes but is not limited to cognitive impairments, functional difficulties, and issues related to caregivers which contribute significantly to medication errors and non-adherence.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!