Background: While hepatitis B and C viral infection have been suppressed, non-B non-C hepatocellular carcinoma (NBNC-HCC) is considered to be rising in incidence terms in some developed countries where prevalence of those viral infections among HCC patients had been very high (such as Japan, Korea, and Italy). To elucidate critical molecular changes in NBNC-HCC, we integrated three large datasets relating to comprehensive array-based analysis of genome-wide DNA methylation (N = 43 pairs) and mRNA/miRNA expression (N = 15, and 24 pairs, respectively) via statistical modeling.

Results: Hierarchical clustering of DNA methylation in miRNA coding regions clearly distinguished NBNC-HCC tissue samples from relevant background tissues, revealing a remarkable tumor-specific hypomethylation cluster. In addition, miRNA clusters were extremely hypomethylated in tumor samples (median methylation change for non-clustered miRNAs: -2.3%, clustered miRNAs: -24.6%). The proportion of CpGs hypomethylated in more than 90% of the samples was 55.9% of all CpGs within miRNA clusters, and the peak methylation level was drastically shifted from 84% to 39%. Following statistical adjustment, the difference in methylation levels within miRNA coding regions was positively associated with their expression change. Receiver operating characteristic (ROC) analysis revealed a great discriminatory ability in respect to cluster-miRNA methylation. Moreover, miRNA methylation change was negatively correlated with corresponding target gene expression amongst conserved and highly matched miRNA sites.

Conclusions: We observed a drastic negative shift of methylation levels in miRNA cluster regions. Changes in methylation status of miRNAs were more indicative of target gene expression and pathological diagnosis than respective miRNA expression changes, suggesting the importance of genome-wide miRNA methylation for tumor development. Our study dynamically summarized global miRNA hypomethylation and its genome-wide scale consequence in NBNC-HCC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4852433PMC
http://dx.doi.org/10.1186/s12943-016-0514-6DOI Listing

Publication Analysis

Top Keywords

methylation
10
mirna
10
non-b non-c
8
non-c hepatocellular
8
hepatocellular carcinoma
8
dna methylation
8
methylation mirna
8
mirna coding
8
coding regions
8
mirna clusters
8

Similar Publications

Parkinson's disease (PD) is a limb movement disorder caused by the degeneration of brain neurons and seriously affects the quality of life of the elderly. However, the current drugs are symptomatic treatments that cannot prevent or delay the development of the disease. Targeted therapy for pathogenesis may be the direction of development in the future.

View Article and Find Full Text PDF

The role of lnc‑MAPKAPK5‑AS1 in immune cell infiltration in hepatocellular carcinoma: Bioinformatics analysis and validation.

Oncol Lett

March 2025

Guangzhou Center for Disease Control and Prevention, School of Public Health, Guangzhou Medical University, Guangzhou, Guangdong 511436, P.R. China.

The oncogenic and tumor suppressor roles of lnc-MAPKAPK5-AS1 in multiple cancers suggest its complexity in modulating cancer progression. The expression and promoter methylation level of lnc-MAPKAPK5-AS1 in hepatocellular carcinoma (HCC) was investigated through data mining from The Cancer Genome Atlas and Gene Expression Omnibus and its significance in prognosis and immunity was explored. lnc-MAPKAPK5-AS1 was co-expressed with its protein-coding gene MAPKAPK5 in HCC and exhibited upregulation in HCC tissues as a result of hypomethylation of its promoter region.

View Article and Find Full Text PDF

Lower risk (LR) myelodysplastic syndromes (MDS) are heterogeneous hematopoietic stem and progenitor disorders caused by the accumulation of somatic mutations in various genes including epigenetic regulators that may produce convergent DNA methylation patterns driving specific gene expression profiles. The integration of genomic, epigenomic, and transcriptomic profiling has the potential to spotlight distinct LR-MDS categories on the basis of pathophysiological mechanisms. We performed a comprehensive study of somatic mutations and DNA methylation in a large and clinically well-annotated cohort of treatment-naive patients with LR-MDS at diagnosis from the EUMDS registry (ClinicalTrials.

View Article and Find Full Text PDF

Functions of METTL1/WDR4 and QKI as m7G modification - related enzymes in digestive diseases.

Front Pharmacol

January 2025

Department of Metabolism and Endocrinology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China.

N-methylguanosine (m7G) modification is one of the most prevalent forms of chemical modification in RNA molecules, which plays an important role in biological processes such as RNA stability, translation regulation and ribosome recognition. Methyl-transferation of m7G modification is catalyzed by the enzyme complex of methyltransferase-like 1 (METTL1) and WD repeat domain 4 (WDR4), and Quaking (QKI) recognizes internal m7G methylated mRNA and regulates mRNA translation and stabilization. Recent studies have found that m7G modification - related enzymes are associated with the onset and progression of digestive cancer, such as colorectal cancer, liver cancer, and other digestive diseases such as ulcerative colitis.

View Article and Find Full Text PDF

Methylation of and Are Risk Factors and Potential Biomarkers for Cervical Lesions.

World J Oncol

February 2025

Department of Pathology, The Seventh Medical Center, Chinese PLA General Hospital, Beijing 100700, China.

Background: The correlation between methylation of paired box gene 1 () and sex determining region Y-box 1 () with human papillomavirus (HPV) infection and the progression of cervical lesions is not well understood. This study aims to explore the potential value of and as diagnostic biomarkers for cervical diseases.

Methods: A total of 139 cervical biopsy tissue samples were obtained from the Department of Pathology, the Seventh Medical Center, Chinese PLA General Hospital from 2021 to 2023.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!