Momilactones, which are diterpenoid phytoalexins with antimicrobial and allelopathic functions, have been found only in rice and the moss Hypnum plumaeforme. Although these two evolutionarily distinct plant species are thought to produce momilactones as a chemical defence, the momilactone biosynthetic pathway in H. plumaeforme has been unclear. Here, we identified a gene encoding syn-pimara-7,15-diene synthase (HpDTC1) responsible for the first step of momilactone biosynthesis in the moss. HpDTC1 is a bifunctional diterpene cyclase that catalyses a two-step cyclization reaction of geranylgeranyl diphosphate to syn-pimara-7,15-diene. HpDTC1 transcription was up-regulated in response to abiotic and biotic stress treatments. HpDTC1 promoter-GUS analysis in transgenic Physcomitrella patens showed similar transcriptional responses as H. plumaeforme to the stresses, suggesting that a common response system to stress exists in mosses. Jasmonic acid (JA), a potent signalling molecule for inducing plant defences, could not activate HpDTC1 expression. In contrast, 12-oxo-phytodienoic acid, an oxylipin precursor of JA in vascular plants, enhanced HpDTC1 expression and momilactone accumulation, implying that as-yet-unknown oxylipins could regulate momilactone biosynthesis in H. plumaeforme. These results demonstrate the existence of an evolutionarily conserved chemical defence system utilizing momilactones and suggest the molecular basis of the regulation for inductive production of momilactones in H. plumaeforme.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4853780 | PMC |
http://dx.doi.org/10.1038/srep25316 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!