N(ϵ) -Carboxymethyllysine Increases the Expression of miR-103/143 and Enhances Lipid Accumulation in 3T3-L1 Cells.

J Cell Biochem

Faculty of Chemistry, Department of Nutritional and Physiological Chemistry, University of Vienna, Althanstraße 14, Vienna 1090, Austria.

Published: October 2016

Advanced glycation endproducts, formed in vivo, but also by the Maillard reaction upon thermal treatment of foods, have been associated with the progression of pathological conditions such as diabetes mellitus. In addition to the accumulation with age, exogenous AGEs are introduced into the circulation from dietary sources. In this study, we investigated the effects of addition of free N(ϵ) -carboxymethyllysine (CML), a well-characterized product of the Maillard reaction, on adipogenesis in 3T3-L1 preadipocytes. Treatment with 5, 50, or 500 μM CML resulted in increased lipid accumulation to similar extents, by 11.5 ± 12.6%, 12.9 ± 8.6%, and 12.8 ± 8.5%, respectively. Long-term treatment with 500 μM CML during adipogenesis resulted in increases in miR-103 and miR-143 levels, two miRNAs described to be involved in impaired glucose homeostasis and increased lipid accumulation. Furthermore, the expression of genes associated with these miRNAs, consisting of Akt1, PI3k, and Cav1 was regulated by CML. Short-term treatment of mature 3T3-L1 adipocytes with CML resulted in decreased basal glucose uptake. These results, indicate that the addition of protein-free CML to 3T3-L1 cells influence parameters associated with adipogenesis and glucose homeostasis at transcriptional, and functional level; this indicates that free CML derived from exogenous sources, in addition to protein-bound CML may be relevant in this context. J. Cell. Biochem. 117: 2413-2422, 2016. © 2016 The Authors. Journal of Cellular Biochemistry Published by Wiley Periodicals, Inc.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4982050PMC
http://dx.doi.org/10.1002/jcb.25576DOI Listing

Publication Analysis

Top Keywords

lipid accumulation
12
nϵ -carboxymethyllysine
8
3t3-l1 cells
8
maillard reaction
8
cml
8
treatment 500 μm
8
500 μm cml
8
increased lipid
8
glucose homeostasis
8
-carboxymethyllysine increases
4

Similar Publications

Alzheimer's disease (AD) is a severe neurodegenerative disease, and the most common type of dementia, with symptoms of progressive cognitive dysfunction and behavioral impairment. Studying the pathogenesis of AD and exploring new targets for the prevention and treatment of AD is a very worthwhile challenge. Accumulating evidence has highlighted the effects of fatty acid metabolism on AD.

View Article and Find Full Text PDF

Vitamin D is crucial for maintaining bone health and development, and bone mineral accumulation during childhood and adolescence affects long-term bone health. Vitamin D deficiency has been widely recognized as one of the main causes of osteoporosis and fractures, especially during the growth and development stage of children. Recent studies have shown that vitamin D deficiency may affect the deviation of bone development in children by mediating lipid metabolism disorders, but its specific mechanism of action has not been fully elucidated.

View Article and Find Full Text PDF

Dynamic transcriptomics unveils parallel transcriptional regulation in artemisinin and phenylpropanoid biosynthesis pathways under cold stress in Artemisia annua.

Sci Rep

December 2024

National & Local United Engineering Laboratory for Chinese Herbal Medicine Breeding and Cultivation, School of Life Sciences, Jilin University, Changchun, Jilin Province, People's Republic of China.

Cold stress, a major abiotic factor, positively modulates the synthesis of artemisinin in Artemisia annua and influences the biosynthesis of other secondary metabolites. To elucidate the changes in the synthesis of secondary metabolites under low-temperature conditions, we conducted dynamic transcriptomic and metabolite quantification analyses of A. annua leaves.

View Article and Find Full Text PDF

Omentin-1 mitigates non-alcoholic fatty liver disease by preserving autophagy through AMPKα/mTOR signaling pathway.

Sci Rep

December 2024

Department of Gastroenterology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Jiangxi, 330006, China.

Adipose tissue-derived adipokines facilitate inter-organ communication between adipose tissue and other organs. Omentin-1, an adipokine, has been implicated in the regulation of glucose and insulin metabolism. However, limited knowledge exists regarding the regulatory impact of endogenous omentin-1 on hepatic steatosis.

View Article and Find Full Text PDF

Ferredoxin 1 and 2 (FDX1/2) constitute an evolutionarily conserved FDX family of iron-sulfur cluster (ISC) containing proteins. FDX1/2 are cognate substrates of ferredoxin reductase (FDXR) and serve as conduits for electron transfer from NADPH to a set of proteins involved in biogenesis of steroids, hemes, ISC and lipoylated proteins. Recently, we showed that Fdx1 is essential for embryonic development and lipid homeostasis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!