Functional analysis of primary tissue-specific stem cells is hampered by their rarity. Here we describe a greatly miniaturized microfluidic device for the multiplexed, quantitative analysis of the chemotactic properties of primary, bone marrow-derived mesenchymal stem cells (MSC). The device was integrated within a fully customized platform that both increased the viability of stem cells ex vivo and simplified manipulation during multidimensional acquisition. Since primary stem cells can be isolated only in limited number, we optimized the design for efficient cell trapping from low volume and low concentration cell suspensions. Using nanoliter volumes and automated microfluidic controls for pulsed medium supply, our platform is able to create stable gradients of chemoattractant secreted from mammalian producer cells within the device, as was visualized by a secreted NeonGreen fluorescent reporter. The design was functionally validated by a CXCL/CXCR ligand/receptor combination resulting in preferential migration of primary, non-passaged MSC. Stable gradient formation prolonged assay duration and resulted in enhanced response rates for slowly migrating stem cells. Time-lapse video microscopy facilitated determining a number of migratory properties based on single cell analysis. Jackknife-resampling revealed that our assay requires only 120 cells to obtain statistically significant results, enabling new approaches in the research on rare primary stem cells. Compartmentalization of the device not only facilitated such quantitative measurements but will also permit future, high-throughput functional screens.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/c6lc00236f | DOI Listing |
J Cereb Blood Flow Metab
January 2025
Clinical Research Center, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Stem cell-based therapies have raised considerable interest to develop regenerative treatment for neurological disorders with high disability. In this review, we focus on recent preclinical and clinical evidence of stem cell therapy in the treatment of degenerative neurological diseases and discuss different cell types, delivery routes and biodistribution of stem cell therapy. In addition, recent advances of mechanistic insights of stem cell therapy, including functional replacement by exogenous cells, immunomodulation and paracrine effects of stem cell therapies are also demonstrated.
View Article and Find Full Text PDFCirc Res
January 2025
Division of Cardiovascular Medicine, Department of Medicine (J.B.H., J.D.B., A.C.D.), Vanderbilt University Medical Center, Nashville, TN.
Cardiovascular and cardiometabolic diseases are leading causes of morbidity and mortality worldwide, driven in part by chronic inflammation. Emerging research suggests that the bone marrow microenvironment, or marrow niche, plays a critical role in both immune system regulation and disease progression. The bone marrow niche is essential for maintaining hematopoietic stem cells (HSCs) and orchestrating hematopoiesis.
View Article and Find Full Text PDFPLoS Genet
January 2025
MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom.
The genetic circuitry that encodes the developmental programme of mammals is regulated by transcription factors and chromatin modifiers. During early gestation, the three embryonic germ layers are established in a process termed gastrulation. The impact of deleterious mutations in chromatin modifiers such as the polycomb proteins manifests during gastrulation, leading to early developmental failure and lethality in mouse models.
View Article and Find Full Text PDFPLoS One
January 2025
Faculty of Veterinary Science, Veterinary Clinical Stem Cell and Bioengineering Research Unit, Chulalongkorn University, Bangkok, Thailand.
Potential trend of regenerative treatment for type I diabetes has been introduced for more than a decade. However, the technologies regarding insulin-producing cell (IPC) production and transplantation are still being developed. Here, we propose the potential IPC production protocol employing mouse gingival fibroblast-derived induced pluripotent stem cells (mGF-iPSCs) as a resource and the pre-clinical approved subcutaneous IPC transplantation platform for further clinical confirmation study.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Otolaryngology, Harvard Medical School, Boston, Massachusetts, United States of America.
Stem cell pluripotency gene Sox2 stimulates expression of proneural basic-helix-loop-helix transcription factor Atoh1. Sox2 is necessary for the development of cochlear hair cells and binds to the Atoh1 3' enhancer to stimulate Atoh1 expression. We show here that Sox2 deletion in late embryogenesis results in the formation of extra hair cells, in contrast to the absence of hair cell development obtained after Sox2 knockout early in gestation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!