A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material. | LitMetric

Evaluation of electrospun PLLA/PEGDMA polymer coatings for vascular stent material.

J Biomater Sci Polym Ed

a Department of Mechanical Engineering , University of Colorado at Boulder, Boulder , CO , USA.

Published: August 2016

The field of percutaneous coronary intervention has seen a plethora of advances over the past few decades, which have allowed for its development into safe and effective treatments for patients suffering from cardiovascular diseases. However, stent thrombosis and in-stent restenosis remain clinically significant problems. Herein, we describe the synthesis and characterization of fibrous polymer coatings on stent material nitinol, in the hopes of developing a more suitable stent surface to enhance re-endothelialization. Electrospinning technique was used to fabricate polyethylene glycol dimethacrylate/poly l-lactide acid (PEGDMA/PLLA) blend fiber substrate with tunable elasticity and hydrophilicity for use as coatings. Attachment of platelets and arterial smooth muscle cells (SMC) onto the coatings as well as the secretory effect of mesenchymal stem cells cultured on the coatings on the proliferation and migration of arterial endothelial cells and SMCs were assessed. It was demonstrated that electrospun PEGDMA/PLLA coating with 1:1 ratio of the components on the nitinol stent-reduced platelet and SMC attachment and increased stem cell secretory factors that enhance endothelial proliferation. We therefore postulate that the fibrous coating surface would possess enhanced biological compatibility of nitinol stents and hold the potential in preventing stent failure through restenosis and thrombosis.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09205063.2016.1176715DOI Listing

Publication Analysis

Top Keywords

polymer coatings
8
stent material
8
coatings
5
stent
5
evaluation electrospun
4
electrospun plla/pegdma
4
plla/pegdma polymer
4
coatings vascular
4
vascular stent
4
material field
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!